We determine the kinetic phase diagram for nucleation and growth of crystal phases in a suspension of charged colloids. Exploiting the seeding approach in extensive simulations, we calculate nucleation barrier heights for face-centered cubic (fcc) and body-centered cubic (bcc) phases for varying screening lengths and supersaturations. We determine for the entire metastable fluid region the crystal polymorph with the lowest nucleation barrier, and find a regime close to the triple point where metastable bcc can form due to a lower nucleation barrier, even though fcc is the stable phase. For higher supersaturation, we find that the difference in barrier heights decreases and we observe a mix of hexagonal close-packed, fcc, and bcc structures in the growth of crystalline seeds as well as in spontaneously formed crystals. Our kinetic phase diagram rationalizes the different crystallization mechanisms observed in previous work.