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Abstract

There is some numerical evidence that the self-consistent field theory

(SCFT) for dry polymer brushes converges to the strong stretching theory

(SST) in the limit of strong stretching [8]. However, the numerical results

are restricted to moderately stretched brushes. We insert the SST pre-

diction for the self-consistent field into the diffusion equations of SCFT

and analyse them in the strong stretching limit using asymptotic analysis.

The resulting asymptotic solution for the segment density φ shows that

the self-consistency relation φ = 1 is not satisfied, not even approximately.

Therefore, any future asymptotic treatment should include corrections to

the SST prediction. Nevertheless, our asymptotic analysis is the first

step towards asymptotic evidence that the SCFT converges to SST in the

strong stretching limit.
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Introduction

Polymers form an ubiquitous class of materials. Examples are synthetic materials

such as plastics and rubbers, and natural materials such as wool, proteins and DNA.

Polymers are also present in personal care products, paints and processed foods.

Polymers are popular as an industrial material because they can be cheap, easy to

process, and display a large flexibility in their material properties.

This flexibility is due to their large variety of design parameters. Material de-

sign is usually done by producing a large amount of different samples with slightly

different design parameters. The desired material properties are then tested experi-

mentally. Because the design parameter space is enormous, this method is expensive

and inefficient. Therefore accurate theoretical methods may be helpful to understand

which parameters are important and how they should be chosen. In short, polymer

modelling can be helpful when designing a new polymeric material [9].

The self-consistent field theory (SCFT) initiated by Edwards [1] in 1965 “has

a track record to rival any and all theories in soft condensed matter physics” [10].

Although SCFT can be applied to virtually any equilibrium polymer system [10], it

is particularly accurate when each polymer chain is in contact with a large number of

other chains. This is the case with, for example, highly concentrated polymer solutions

and high-molecular-weight polymer melts. In other situations, such as dilute polymer

solutions, different techniques such as the renormalisation group or field-theoretic

simulations need to be considered [9]. Another possible downside of SCFT is that it

requires numerical methods.

The strong stretching theory (SST) introduced by Semenov [3] in 1985 is an ap-

proximation of the SCFT applicable to stretched polymers. The SST gives simple

closed-form formulas for quantities of interest, which makes it easier to understand

systems intuitively and qualitatively. However, SST is often inaccurate for realistic
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experimental conditions [10]. Numerous papers have been written about the main cor-

rections to SST, partly to provide improved closed-form approximations, and partly

to understand the accuracy of SST. Nonetheless, there is no well-defined approach to

these “finite stretching corrections” [8].

Perturbation theory with the stretching as the large parameter could provide a

systematic approach to finite stretching corrections. Ideally, this approach would lead

to more rigorous constraints/bounds on the finite stretching corrections, as opposed

to the current corrections based on physical intuition or numerical experimentation

and validation. These constraints could at the same time give conclusive evidence on

the accuracy of the SST in the strong-stretching limit.

We have chosen the so-called “dry polymer brush” as the testing ground of this

perturbative approach, because the dry polymer brush is a simple but non-trivial

polymer system, whose SST and most important finite stretching corrections are

known numerically [8]. Apart from this, brushes are important themselves: they

can modify surface properties such as friction, wetting and adhesion, and help our

understanding of block copolymers [10].

Outline

We start this thesis by explaining both the SCFT and the SST of the dry polymer

brush in Chapter 1. Our presentation is adapted from a handbook by Matsen [10].

Then in Chapter 2 we test, with numerical and asymptotic analysis, to what extent

the SST prediction for the self-consistent field is indeed self-consistent in the strong

stretching limit. To the best of our knowledge, the asymptotic analysis has not been

done before.

Finally in Chapter 3 we discuss what we have learned and how to continue.

5



Chapter 1

Self-consistent field theory of the dry
polymer brush

In this chapter we will present the self-consistent field theory (SCFT) formalism for

the so-called “dry polymer brush”. We start by defining the dry polymer brush,

and then develop the SCFT in Section 1.2. Next, we present the strong stretching

approximation in Section 1.3, and finish with the diffusion equations for SCFT in

Section 1.4. Our presentation is adapted from a handbook by Matsen[10].

1.1 Definition of the dry polymer brush

We model the brush as a collection of individual polymer chains, so we first need to

model a single chain. To do this, we use the continuous Gaussian chain model.

1.1.1 Continuous Gaussian chain in an external field

A polymer chain is modelled using the continuous Gaussian chain model, which firstly

means that its position is parametrised by a differentiable function r(s) of a continu-

ous parameter s ∈ [0, 1]. The physical interpretation of the parametrisation parameter

s is that s-intervals of equal length have equal mass. 1

Secondly, the continuous Gaussian chain model incorporates an entropic stretching

energy 2 proportional to |r ′(s)|2. Lastly we can include an external field W (r).

1 Conventionally, s is chosen in [0, N ]. In this case, N is the number of “course-grained segments”,
each of which have a segment length b (see for example [9]). We use s ∈ [0, 1] and the radius of
gyration Rg instead, which in the segment language becomes Rg =

√
6Nb1/2.

2 The segment language of footnote 1 is useful to explain why this stretching energy is entropic
and why it is proportional to |r ′(s)|2. Here we take the continuous Gaussian chain model for granted.
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Combining these two energies, a piece [s1, s2] of the chain r(s) has energy

E[r, s1, s2] =

∫ s2

s1

ds

(
|r ′(s)|2

4R 2
g

+W (r(s))

)
. (1.1)

This energy is non-dimensional, i.e. we have set kBT = 1 which we will do throughout

this thesis. Furthermore R 2
g is the squared radius of gyration. The radius of gyration

Rg is a characteristic size of the free Gaussian polymer chain. More precisely, it

is the average root-mean-squared distance of the polymer from its centre of mass.

Therefore, R 3
g is the characteristic volume spanned by the free chain. This must be

contrasted with the volume v that the chain actually occupies.

All equilibrium properties of the Gaussian chain are then determined by the canon-

ical partition function Q[w] defined by

Q[W ] ∝
∫
D̃r exp

(
−
∫ 1

0

dsW (r(s))

)
, (1.2a)

D̃r ≡ exp

(
−
∫ 1

0

ds
|r ′(s)|2

4R2
g

)
Dr. (1.2b)

Here the factor (1.2b) incorporates the Boltzmann factor due to the stretching energy

and Dr is the measure of functional integration over all paths r(s).3

1.1.2 The dry polymer brush

To model the brush, we use n identical continuous Gaussian chains rα(s) = (xα, yα, zα)(s)

labelled by α = 1, . . . , n. The chains are identical in the sense that they each have

the same radius of gyration Rg and the same occupied volume v. Then the molecules

are grafted to the surface x = 0 of area A, which means we must enforce xα(1) = 0

for each molecule α. We also assume that the grafting density n/A of chains is so

3Normally we need to include kinetic energy and an integral over momentum. In this case,
however, this only results in an irrelevant constant proportionality factor in the partition function[2].
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high, that the brush is translationally invariant in the y and z directions.

The main further assumption of the dry polymer brush is that the chains together

do not overlap nor leave any open space. To be precise, we assume that the brush

has uniform “microscopic segment density” φ̂ = 1, where

φ̂(r) ≡ v
n∑

α=1

∫ 1

0

ds δ(r − rα(s)). (1.3)

The microscopic segment density φ̂ can be interpreted as the local fraction of space

occupied by the polymer, so φ̂ = 1 requires the polymer to fill all available space.

Integrating φ̂ = 1 over the volume AL of the brush gives that the brush length L is

determined by the total volume nv of the chains as AL = nv.

Effectively, the only interaction between the chains is in the requirement of uniform

microscopic segment density. Therefore, the canonical partition function of the brush

Z is almost entirely decoupled. It is (see previous footnote 3)

Z ∝
∫ (∏

α

D̃rα δ(xα(1))

)
δ[1− φ̂]. (1.4)

Here the factor δ[1−φ̂] is a functional delta function that ensures that the microscopic

segment density is uniform i.e. that φ̂(r) = 1 for every r, and δ(xα(1)) is a normal

delta function that ensures that the end of each chain is grafted to the substrate at

x = 0. Since all equilibrium properties of the brush are determined by Z, our task is

to calculate Z. At the same time the definition (1.4) of Z completes the definition of

the dry polymer brush.

8



1.2 The self-consistent field approximation

Unfortunately, we cannot calculate the partition function Z (1.4) exactly. To ob-

tain analytic results, we must resort to approximations. The first of these is the

self-consistent field approximation discussed in this section, the second is the strong

stretching approximation discussed in Section 1.3.

1.2.1 The self-consistent field approximation

To start with, we use the integral representation of the δ-functional

δ[1− φ̂] ∝
∫
DW exp

(
−v
∫
drW (r)(1− φ̂)

)
. (1.5)

where the fields W (r) are purely imaginary. This is just the functional analogue of

the identity δ(x) = 1
2π

∫
dk eikx. Inserting (1.3) and (1.5) into (1.4) decouples the

Drα integrals, giving

Z ∝
∫
DW exp (−F [W ]) (1.6)

where for clarity we have defined

F [W ]

n
≡ − ln

(
Q[W ]

A

)
− 1

AL

∫
drW (r), (1.7a)

Q[W ] ∝
∫
D̃r exp

(
−
∫ 1

0

dsW (r(s))

)
δ(x(1)). (1.7b)

The factor Q[W ] is the partition function (1.2a) of a single polymer chain in a field

W apart from the factor δ(x(1)) which ensures the grafting of the chain.

Now comes the key “self-consistent field approximation”: we approximate the

integral (1.6) over DW with the dominant contribution from the self-consistent field
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w. We do this using the saddle point method, so the SCFT approximation of (1.6) is

Z ≈ exp(−F [w])

where the self-consistent field w is defined as the saddle point of F [W ], i.e. the point

where DF [W ]/DW = 0. Inserting the definition (1.7a) of F [W ] into this saddle point

equation gives the definition of the self-consistent field w: it is the field w such that

−AL D ln(Q[W ])

DW

∣∣∣∣
w(r)

= 1. (1.8)

To make this condition more insightful, we define φ(r) as the average of the

microscopic segment concentration φ̂ of n polymers in a field W (r) i.e.

φ[W ](r) ≡ 1

Q[W ]

∫
D̃r φ̂(r) exp

(
−
∫ 1

0

dsW (r(s))

)
δ(x(1)) (1.9)

where φ̂ is given by (1.3). We will refer to φ as “the segment density” from now

on, as opposed to the microscopic segment density φ̂. The segment density φ can be

expressed as

φ[W ](r) = −AL D ln(Q[W ])

DW

∣∣∣∣
W (r)

.

So the condition (1.8) translates into the following: the self-consistent field is defined

as the field w(r) such that

φ[w] = 1, (1.10)

where the segment density φ is defined by (1.9).

So to calculate the partition function Z with self-consistent field theory we should

take two steps: firstly, find the self-consistent field w that makes sure that φ = 1, and

secondly, calculate the free energy F [w] from (1.7a).
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1.2.2 Exploiting the planar symmetry of the brush

The self-consistent field approximation conveniently approximated n coupled path

integrals with one path integral (1.7b). A further simplification arises from the sym-

metry of the brush: we have assumed that the brush is translationally invariant in

the y and z directions. This means that both the self-consistent field w(r) and the

segment density φ(r) can only depend on the x-coordinate.

Therefore, the different components x, y and z of the chains in (1.7b) decouple.

Since the y and z components are unaffected by the field W (x), they only give trivial

multiplicative factors, giving

Q[W ] ∝ A

∫
D̃x(s) exp

(
−
∫ 1

0

dsW (x(s))

)
δ(x(1)). (1.11a)

φ[W ](r) ≡ 1

Q[W ]

∫
D̃x φ̂(x) exp

(
−
∫ 1

0

dsW (x(s))

)
δ(x(1)) (1.11b)

Thus we are looking for the self-consistent field w(x) such that the segment density

φ(x) determined by (1.11) satisfies φ = 1. The only thing we need is a convenient

manner of calculating the path integrals (1.11). In Section 1.3 the partition function

Q[W ] is approximated using the strong stretching theory (SST), while in Section 1.4

a computational method is presented that uses diffusion equations.

1.3 The strongly stretched dry brush

We now turn to the specific case of the strongly stretched dry brush. In this case, we

can make a simplification known as the strong stretching theory (SST), allowing us

to approximate the self-consistent field w and the free energy F of the brush.
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Before presenting the SST, we introduce the perturbation parameter ε:

ε = Rg/L.

So ε measures the extent to which the polymer chains are stretched, more precisely

the ratio between their natural length scale Rg and their actual extension L in the

brush. Now the strongly stretched dry brush is defined as a dry brush for which

ε � 1. To take advantage of the perturbation parameter, we non-dimensionalise x

and rescale W as

x = Lx̃, W =
µ

ε2
.

In this language the energy becomes (dropping the tilde)

E[x(s), s1, s2] =
1

ε2

∫ s2

s1

ds

(
|x′(s)|2

4
+ µ(x(s))

)
. (1.12)

and the partition function Q[µ] becomes

Q[µ] ∝ A

∫
Dx(s) exp (−E[x(s), 0, 1]) δ(x(1)). (1.13)

We now see why we used the scaling W = µ/ε2: with this scaling the stretching

energy and the potential energy µ in (1.12) are evidently of the same order. If,

instead, the stretching energy would dominate, we would just get a random walk

concentrated around the grafting surface. If the potential energy would dominate,

the chains would be concentrated around the minimums of the potential. So we need

the entropic stretching energy and the potential energy µ to be in competition to

satisfy φ = 1.
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1.3.1 Strong stretching theory

Now if the brush is strongly stretched, i.e. if ε � 1, the dominant contribution to

the partition function Q[µ] comes from the paths that minimise their total energy.

This is because the contributions from the paths with higher energy are exponentially

suppressed as exp(−1/ε2) in (1.13), due to the factor 1/ε2 in the energy.

The strong stretching theory (SST) approximates Q[µ] as an integral over these

“ground state paths” only. The ground-state paths x(s) obey the Euler-Lagrange

equations of the energy (1.12), implying

1

2
x′′(s)− ∂xµ(x(s)) = 0. (1.14)

This looks like Newton’s second law, and indeed Milner et al. [4] used an analogy

with classical mechanics to show that the SST approximation of the self-consistent

field µ(x) and the ground-state paths x(s) become

µ(x) = −π
2x2

16
, (1.15a)

x(s) = x0 cos(πs/2). (1.15b)

The expressions (1.15) are the solutions of (1.14), with boundary conditions x(0) = x0,

x(1) = 0 specifying where the chain begins and ends, and the assumption x′(0) = 0,

i.e. the tension of the free end is neglected.

Now the ground-state paths should still give rise to a uniform φ. In the SST this

fixes the distribution g(x0) of the endpoints of the ground-state paths as

g(x0) =
x0√

1− x 2
0

,

which was proven by Netz and Schick [5].
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Using this end-segment distribution, we can compute the free energy F of the

brush. Weighing the paths in (1.13) with g(x0) and using (1.15) and (1.7a) gives

F

n
=

π2

48ε2
(1.16)

This is the final result of the SST: the SST approximation of the free energy.

1.4 The diffusion equations

In this section we describe a manner of calculating φ[µ] and Q[µ] using diffusion

equations. This leaves an inverse problem: we can check whether a field is the self-

consistent field µ, but we cannot calculate µ directly.

To calculate φ[W ] and Q[W ], we introduce the partial partition functions

q(x, s) ∝
∫
Dx(s) exp (−E[x(s), 0, s]) δ(x(s)− x), (1.17a)

q†(x, s) ∝
∫
Dx(s) exp (−E[x(s), s, 1]) δ(x(s)− x) δ(x(1)). (1.17b)

where the energy E is given by (1.12). The locality of the energy (1.12) implies that

these partial partition functions satisfy diffusion equations (see [10] for details). The

substitution

q∗(x, s) = q†(x, 1− s)

slightly simplifies these diffusion equations, giving

∂sq(x, s) =

(
ε2∂2x −

µ(x)

ε2

)
q(x, s), (1.18a)

∂sq
∗(x, s) =

(
ε2∂2x −

µ(x)

ε2

)
q∗(x, s). (1.18b)
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If the diffusion equations (1.18) are accompanied by suitable boundary conditions,

we can calculate the partial partition functions q and q∗ from the external field.

Combining the definitions (1.17) of the partial partition functions with the ex-

pressions (1.11b) for φ, (1.13) for Q and (1.7a) for F , we can calculate Q, φ and F

from q and q∗:

Q =

∫
dx q(x, s)q∗(x, 1− s), (1.19a)

φ(x) =
1

Q

∫ 1

0

ds q(x, s)q∗(x, 1− s). (1.19b)

F = − ln (Q)− 1

ε2

∫ 1

0

dxµ(x) (1.19c)

The problem of the dry polymer brush reduces completely to the following: find

the self-consistent field µ(x) such that the concentration (1.19b) is uniform, where

q(x, s) and q∗(x, s) are determined by the diffusion equations (1.18) and their bound-

ary conditions.

1.4.1 Boundary conditions

We only need to specify the relevant boundary conditions. Firstly, we have the initial

conditions

q(x, 0) = 1, (1.20a)

q∗(x, 0) =
√

6ε δ(x). (1.20b)

The initial condition (1.20b) makes sure that one end of the polymer chain is con-

strained to x = 0. The initial condition (1.20a) does not constrain the other end of

the polymer.

Secondly, we want to deal with the boundaries x = 0 and x = 1. The boundary
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conditions at x = 0 and x = 1 are

∂xq(0, s) = ∂xq
∗(0, s) = 0,

∂xq(1, s) = ∂xq
∗(1, s) = 0.

These boundary conditions make sure that a polymer chain does not go through the

boundaries x = 0 or x = 1. Therefore, together with the diffusion equations (1.18)

they imply that Q (1.19a) is independent of s.
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Chapter 2

Investigation of the diffusion equa-
tions with parabolic potential in the
strong stretching limit

As we have seen in Section 1.3, in the case of the strongly stretched brush we can

approximate the self-consistent field with a parabola. Recall that the self-consistent

field µ was defined as the field that causes the segment density φ to be uniform.

To see if the parabolic potential indeed approximately satisfies this self-consistency

relation, we insert the parabolic potential (1.15a) into the diffusion equations (1.18).

This gives the diffusion equations for the parabolic potential

∂sq(x, s) =

(
ε2∂2x +

π2

16ε2
x2
)
q(x, s), (2.1a)

∂sq
∗(x, s) =

(
ε2∂2x +

π2

16ε2
x2
)
q∗(x, s). (2.1b)

In this chapter, we analyse (2.1) in the strong stretching limit ε � 1 using both

perturbative and numerical methods. Then we calculate the segment density φ from

our asymptotic and numerical solution of q and q∗, to check if φ = 1 is approximately

satisfied.

2.1 Asymptotic solution

We start with the asymptotic solution. In Section 2.1.1 we transform the diffusion

equations (2.1) in a manner very similar to the WKB approximation. Then in Section

2.1.2 and 2.1.3 we compute the asymptotic solution for the transformed variables, and

in Section 2.1.4 we compute the asymptotic solution for the segment density φ.
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2.1.1 Transforming the diffusion equations

We start with the transformation

q ≡ exp(σ/ε2), q∗ ≡ exp(σ∗/ε2), (2.2)

giving the transformed diffusion equations

∂sσ = ε2∂2xσ + (∂xσ)2 +
π2

16
x2, (2.3a)

∂sσ
∗ = ε2∂2xσ

∗ + (∂xσ
∗)2 +

π2

16
x2, (2.3b)

and the transformed boundary conditions

σ(x, 0) = 0, (2.4a)

lim
s→0

exp(σ∗(x, s)/ε2) =
√

6ε δ(x), (2.4b)

∂xσ(0, s) = ∂xσ
∗(0, s) = 0, (2.4c)

∂xσ(1, s) = ∂xσ
∗(1, s) = 0. (2.4d)

To simplify our system further, we use the transform

u ≡ ∂xσ, u∗ ≡ ∂xσ
∗. (2.5)

Differentiating (2.3) with respect to x and using (2.4) gives

∂su = ε2∂2xu+ 2u∂xu+
π2

8
x (2.6a)

u(0, s) = u(1, s) = u(x, 0) = 0 (2.6b)
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and a similar system for the starred variables

∂su
∗ = ε2∂2xu

∗ + 2u∗∂xu
∗ +

π2

8
x, (2.7a)

u∗(0, s) = u∗(1, s) = 0, (2.7b)

and (2.4b) must also hold. After our two transformations (2.2) and (2.5) we can

truly exploit the strong stretching ε � 1: setting ε = 0 in (2.6) and (2.7) gives two

first-order scalar systems solvable using the method of characteristics.

Once we know u and u∗, we must recover σ and σ∗ through

σ(x, s) =

∫ x

x0

dr u(r, s) + c(x0, s), (2.8a)

σ∗(x, s) =

∫ x

x0

dr u∗(r, s) + c∗(x0, s), (2.8b)

where c(x0, s), c
∗(x0, s) are integration constants depending on s and the lower limit

x0 only. Using (2.3), (2.6) and (2.7), we can determine c(x0, s) and c∗(x0, s), giving

σ(x, s) =

∫ x

0

dr u(r, s) + ε2
∫ s

0

dw ∂xu(0, w), (2.9a)

σ∗(x, s) =

∫ x

0

dr u∗(r, s) + ε2
∫ s

0

dw ∂xu(0, w) + c∗, (2.9b)

where c∗ is a constant determined by the condition (2.4b), and we have chosen x0 = 0

for convenience. Next we can recover q and q∗ using (2.2).

2.1.2 Asymptotic solution for u

We begin with the outer asymptotic solution for u. Expanding u = u0 + ε2u1 + . . . ,

we obtain

∂su0 − 2u0∂xu0 =
π2

8
x (2.10)
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with the same boundary conditions (2.6b). This is a first-order scalar PDE for u0,

which can therefore be solved exactly using the method of characteristics, giving

u0(x, s) =


π
4

tan(πs/2)x for x < cos(πs/2),

π
4

√
1− x2 for x > cos(πs/2).

(2.11)

It is straightforward to check that these expressions indeed satisfy (2.10) and the

boundary conditions (2.6b). In fact, for x < cos(πs/2) we have an exact solution of the

full PDE (2.6a). This means we expect an exponentially small error for x < cos(πs/2).

For x > cos(πs/2), we expect an error of order O(ε2).

Inner layer for u at x = 1

At x = 1 we find an inner layer for u(x, s) of width ε4/3 and height ε2/3. Defining

x = 1− ε4/3ξ and u(x, s) = ε2/3v(ξ, s), we have the governing equation

∂2ξv − 2v∂ξv +
π2

8
= 0, (2.12a)

v(0, s) = 0, v(ξ, s) ∼ π

2
√

2

√
ξ as ξ −→∞. (2.12b)

We can now see why we had to choose a width ε4/3 and height ε2/3: this is the only

way in which (2.6) gives a sensible dominant balance and u(x, s) = ε2/3v(ξ, s) with

v given by (2.12b) is O(1) as ξ −→ ∞. This same line of reasoning will be used to

determine the width and height of all other boundary layers.

A solution for v in terms of the Airy function can be found. The solution is

v(ξ, s) = −C1
Ai′ (C1ξ − C2)

Ai (C1ξ − C2)

where C1 = 1
2
π2/3 and C2 = 4π−4/3∂ξv(0, s) ≈ 1.019 is defined by Ai′ (−C2) = 0. Note

that the differential equation is extremely sensitive to its initial conditions. Any larger
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value ∂ξv(0, s) will cause v to blow up for finite ξ, and any smaller value ∂ξv(0, s) < C

will cause v to behave as −
√
ξ instead of

√
ξ. The inner solution at x = 1 becomes

uinner(x, s) = −ε2/3C1

Ai′
(
C1ε

−4/3(1− x)− C2

)
Ai (C1ε−4/3(1− x)− C2)

(2.13)

valid when 1− x = O(ε4/3).

We can combine the inner solution (2.13) with the outer solution (2.11) into a

partial composite solution. We say partial, because we can only expect this partial

composite solution to be valid away from the other inner layers that we will discuss

shortly. The partial composite solution is the sum of the outer (2.11) and inner (2.13)

solutions minus their common limit (2.12b) i.e.

ucomp(x, s) = uinner(x, s) +
π

4

√
1− x2 − π

2
√

2

√
1− x. (2.14)

This is valid when x > cos(πs/2) and s is not close to either 0 or 1.

Inner layer for u at x = cos(πs/2)

At x = cos(πs/2) we find a corner layer for u(x, s) of width ε and height ε. Defin-

ing x = cos(πs/2) + εξ and u(x, s) = π
4
(sin(πs/2) + εv(ξ, s)), we have the governing

equation

∂sv = ∂2ξv +
π

2
v∂ξv +

π

2
ξ, (2.15a)

v(ξ, s) ∼ tan(πs/2)ξ as ξ −→ −∞, v(ξ, s) ∼ − cot(πs/2)ξ as ξ −→∞. (2.15b)

Unfortunately, we have not found an analytic solution for this inner layer.

Breakdown of the corner layer for u

We expect our analysis (2.15) of the corner layer to break down when x approaches

the boundaries x = 0 and x = 1. The reason is that at least (2.15b) cannot hold
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anymore: near x = 0 we have the boundary condition for u(x = 0, s) = 0 instead,

and near x = 1 we have the boundary layer (2.12).

Near x = 0 it will break down around (x, s) = (0, 1) where x = cos(πs/2) = O(ε)

since the corner layer has width ε. This translates into x = O(ε) and 1 − s = O(ε).

So the area where the corner layer breaks down near x = 0 is O(ε2).

Near x = 1 it will break down around (x, s) = (1, 0) where 1−x = 1−cos(πs/2) =

O(ε) since the corner layer has width ε and the inner layer at x = 1 has relatively

negligible width ε4/3. This translates into 1− x = O(ε) and s = O(ε1/2). So the area

where the corner layer breaks down near x = 1 is O(ε3/2).

2.1.3 Asymptotic solution for u∗

Next we deal with the outer asymptotic solution for u∗. Expanding u∗ = u∗0+ε
2u∗1+. . .

gives

∂su
∗
0 − 2u∗0∂xu

∗
0 =

π2

8
x, (2.16a)

u∗0(0, s) = u∗0(1, s) = 0, (2.16b)

So u∗0 is governed by exactly the same PDE as u0, but with different boundary con-

ditions. We start the characteristics from u∗0(x = s = 0) = v with v a real variable,

this yields the solution

u∗0(x, s) = −π
4
x cot(πs/2). (2.17)

In fact this exactly solves (2.7a), but it does not agree with the boundary condition

u∗0(1, s) = 0, suggesting a boundary layer at x = 1. Away from this boundary layer

we expect an exponentially small error.
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Inner layer for u∗ at x = 1

Indeed we find a boundary layer at x = 1 of width ε2 and height 1 with governing

equation

∂2ξu
∗
0 + 2u∗0∂ξu

∗
0 = 0, (2.18a)

u∗0(ξ, s) ∼ −
π

4
cot(πs/2) as ξ −→ −∞ (2.18b)

where x = 1 + ε2ξ. Therefore we get inner solutions of the type

u∗inner = −f(s) tanh(f(s)(1− x)/ε2).

We can match this with the outer solution using Van Dyke’s rule, giving

u∗inner = −π
4

cot(πs/2) tanh
(π

4
cot(πs/2)(1− x)/ε2

)
(2.19)

valid when 1− x = O(ε2).

Again we combine the inner solution (2.19) with the outer solution (2.17) into a

composite solution. The composite solution is the sum of the outer (2.17) and inner

(2.19) solutions minus their common limit (2.18b) i.e.

u∗comp(x, s) = u∗inner(x, s)−
π

4
(x− 1) cot(πs/2). (2.20)

2.1.4 Asymptotic solution for φ

In this section we approximate φ using the outer asymptotic solutions for u and u∗.

To do this, we first have to approximate σ and σ∗, and then q and q∗.

We approximate σ and σ∗ by inserting the outer asymptotic solutions for u and
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u∗ into (2.9a) and (2.9b). This gives

σ0(x, s) =


π
8

tan(πs/2)x2 − ε2

2
log (cos(πs/2)) for x < cos(πs/2),

π
8

(
x
√

1− x2 + arcsin(x) + π
2
(s− 1)

)
for x > cos(πs/2),

(2.21)

and

σ∗0(x, s) = −π
8

cot(πs/2)x2 − ε2

2
log(4 sin(πs/2)/3) (2.22)

For σ∗, we have taken care to agree with the delta function boundary condition (2.4b).

To estimate the error of this approximation, we note that σ and σ∗ are integrals over

u and u∗ so we need to use our understanding of the errors in the asymptotic solutions

for u and u∗.

Firstly for u when x < cos(πs/2) we have an exact solution of the outer problem

so we expect an exponentially small error away from the corner layer. For x larger

than cos(πs/2)−O(ε) we have to integrate over the corner layer giving an order O(ε2)

error. So we have

|σ − σ0|(x, s) =


E.S.T. for x < cos(πs/2)−O(ε),

O(ε2) for x > cos(πs/2)−O(ε),

(2.23)

For σ∗ we reason in the same way. Away from the inner layer at x = 1 we expect

an exponentially small error, but for x close to 1 we have to integrate over the inner

layer at x = 1 giving an order O(ε2) error. So we have

|σ∗ − σ∗0|(x, s) =


E.S.T. for x < 1−O(ε2),

O(ε2) for x > 1−O(ε2),

(2.24)
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Next we approximate q by inserting (2.21) and (2.22) into (2.2) which gives

q0(x, s) =


(1/
√

cos πs/2) exp
(
π
8ε2

tan(πs/2)x2
)

for x < cos(πs/2),

(1/
√

cosπs/2) exp
[ π

8ε2

(
x
√

1− x2 + arcsin(x)

+
π

2
(s− 1)

)] for x > cos(πs/2).

(2.25)

and

q∗0 =
√

3/(4 sin(πs/2)) exp
(
− π

8ε2
cot(πs/2)x2

)
(2.26)

Note the similarity between q∗0 and q0 for x < cos(πs/2). They are the same except

for a phase shift due to the different boundary conditions.

Using these asymptotic solutions q0 and q∗0 we can finally compute the asymptotic

solutions for Q and φ. Firstly, we compute Q by inserting (2.25) and (2.26) in (1.19a).

Since the diffusion equations imply that Q does not depend on s, we can substitute

s = 0 and compute

Q0 =

∫ 1

0

dx q∗0(x, 1) =
√

3/2. (2.27)

Next we compute the asymptotic solution for φ by inserting (2.25) and (2.26) in

(1.19b). The resulting integral cannot be solved analytically, so we used Laplace’s

method to find the asymptotic approximation

φ0(x) =
2

π
log

(
1 +
√

1− x2
x

)
. (2.28)

Here a term O(ε) has already been ignored, but we there is another error due to

the errors (2.23) and (2.24). The order O(ε2) errors in σ and σ∗ might be worrying:

inserting them in q = exp(σ/ε2) and q∗ = exp(σ∗/ε2) gives order O(1) multiplicative

errors in q and q∗. Nevertheless, it turns out that because the O(ε2) errors are

restricted to the region x > cos(πs/2) − O(ε), our asymptotic solutions Q0 and φ0
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are still correct. To be specific we get

Q =
√

3/2 +O(ε2), (2.29a)

φ(x) =
2

π
log

(
1 +
√

1− x2
x

)
+O(ε). (2.29b)

These error estimates should be taken with a grain of salt. In deriving them we have

ignored the breakdown of the corner layer described on Page 21. The expected impact

of this is that the error in Q is O(ε) and that the error in φ(x) is larger near 0 and 1

where the corner layer breakdown matters.

Lastly, inserting our expression (2.29a) for Q into (1.19c) gives

F

kBT
=

π2

48ε2
− ln

(√
3

2

)
+O(ε2).

Most importantly, the dominant term proportional to 1/ε2 agrees with the SST ap-

proximation (1.16). Note however, that this agreement is not unexpected: the domi-

nant term agrees just because we have used the parabolic potential.

2.2 Numerical solution

To check our asymptotic solutions, we solve the diffusion equations (2.3) for σ and σ∗

numerically. To do this, we must first approximate the delta function in the initial

condition (2.4b), which we do with a narrow Gaussian of width a, i.e.

δ(x)→ 1√
πa

exp

(
−x

2

a2

)
. (2.30)
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This implies the following initial condition for σ∗(x, 0):

σ∗(x, 0) = −ε2x
2

a2
+ ε2 ln

(√
6ε√
πa

)
. (2.31)

We then use the backward time, centred space method to solve (2.3) with the modified

initial condition (2.31). So, rewriting the diffusion equations as ∂sσ(x, s) = F (σ(x, s)),

we use the backward Euler method

σ(x, s) = σ(x, s−∆s) + ∆s F̂ (σ(x, s)) (2.32)

to find σ(x, s) from σ(x, s − ∆s). Here F̂ approximates F by replacing the x-

derivatives with finite central differences. For each time step ∆s, the non-linear

equation (2.32) is solved using Newton’s method. We terminate Newton’s method

once the residual of (2.32) is smaller than 10−9 for each x.

Once σ and σ∗ have been computed, we compute the other relevant variables u,

u∗, Q and φ with the formulas in Sections 1.4 and 2.1.1. Integration is implemented

with the trapezoidal rule.

The numerical values we have used are

ε = 0.05, 0.1, 0.2, a = ε/20, ∆x = a/5, ∆s = 10−4 (2.33)

except for σ∗ we use ∆s = 10−6 when s < 0.02.

2.3 Comparison of asymptotic and numerical solutions

Now we compare our asymptotic solutions of Section 2.1 with the numerical solutions

of Section 2.2.

To accurately compare our asymptotic solutions with our numerical solutions, we
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should incorporate the delta function approximation (2.30). This does not affect u,

σ or q, but we should solve for u∗, σ∗ and q∗ again with the adapted initial condition

(2.31). Luckily, the asymptotic solution changes only slightly: for each s in u∗ (2.17),

u∗comp (2.20), σ∗ (2.22) and q∗ (2.26) we just have to do the replacement

s→ s+ (a/2ε)2. (2.34)

In principle, this correction to our asymptotic solution for q∗ also affects the asymp-

totic solution for Q and φ. These corrections are harder to compute, so we stick with

(2.27) and (2.28). In light of the approximation (2.30) and the correction (2.34) we

should actually, computationally, consider the limit a/ε → 0. However, we will see

that the choice a/ε = 1/20 already gives excellent agreement with the asymptotic

solutions for φ.

Furthermore, whenever we present relative differences, we plot the difference di-

vided by the average. So the relative difference between f1 and f2 is plotted as

(f1 − f2)/1
2
(f1 + f2).

2.3.1 Comparison of the segment density

We start with the most important quantity: the segment density φ. Figure 2.1a shows

a plot of the asymptotic solution (2.28) and the numerical calculations. Figure 2.1b

shows the relative difference between the two. The relative difference becomes large

(≥ 5%) only for x close to either 0 or 1 and clearly decreases as ε→ 0.

2.3.2 Comparison of the outer solutions for u and u∗

Next we compare the numerical and outer asymptotic solutions for u(x, s) and u∗(x, s)

in Figure 2.2. We plotted the outer asymptotic solutions given by (2.11) for u and
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(a) (b)

Figure 2.1: (a) A plot of the perturbative (ε = 0) and numerical approximations of
the segment density φ(x). The segment density φ(x) becomes large as x → 0 and
vanishes as x→ 1. (b) Relative difference between the numerical and perturbative ap-
proximations of the segment density φ(x). The thin horizontal line is just a reference
zero line.

(2.17) for u∗, and have incorporated the correction (2.34) for u∗. We have chosen to

plot u and u∗ at fixed x = 0.5 or fixed s = 0.5, where our asymptotic approximations

should be relatively accurate, because this is away from the boundary layers at s = 0,

s = 1 and x = 1. In all figures, the agreement clearly becomes better as ε decreases.

Firstly, in Figure 2.2a we see u(x, s) at fixed x = 0.5 as a function of s. The

agreement is particularly good for s < 0.5, while around s ≈ 0.65 we see the corner

layer (2.15). In Figure 2.2c we have plotted u(x, s) at fixed s = 0.5 as a function

of x. Again for small x < 0.5 the agreement is particularly good, and we see the

corner layer around x ≈ 0.7. Around x = 1 we might see the boundary layer (2.12),

although on this scale the agreement is quite good.

Secondly, in Figure 2.2b we see u∗(x, s) at fixed x = 0.5 as a function of s. The

results are practically indistinguishable. In Figure 2.2d we have plotted u∗(x, s) at

fixed s = 0.5 as a function of x. Away from x = 1 the results are indistinguishable,

while near x = 1 we clearly see the boundary layer (2.18).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: (a-d) u(x, s) and u∗(x, s) at fixed x = 0.5 or fixed s = 0.5. (e-f) Absolute
relative difference between the outer approximation of u(x, s) (e) or u∗(x, s) (f) and
the numerical results for ε = 0.05. The relative difference is shown as a greyscale
where lighter is smaller (see colourbar).
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Finally in Figure 2.2e and 2.2f we have plotted the absolute relative difference

between the outer perturbative expansions and numerical results for ε = 0.05. In

Figure 2.2e we clearly see the corner layer at x = cos(πs/2) and the boundary layer

at x = 1. Within the corner layer, the difference is largest for (x, s) = (0, 1) and

(x, s) = (1, 0), which is in line with the discussion on Page 21. In Figure 2.2f we also

clearly see the boundary layer at x = 1. Furthermore, it is reassuring that, except for

these thin inner layers, the numerical and perturbative approximations agree quite

well.

2.3.3 Comparison of composite solutions

In Figures 2.3a and 2.3b we have plotted the results for the composite approximation

(2.14) of u and (2.20) of u∗ for fixed s = 0.5 and near x = 1. Again we have

incorporated the correction (2.34) for u∗. The composite solution is in both cases

a clear improvement over the outer solution. For u, the partial composite solution

(2.14) becomes worse for smaller x, but this is to be expected. As x decreases it

gets closer to the corner layer (2.15), which is not included in this partial composite

solution.
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(a) (b)

Figure 2.3: Composite approximation of u(x, s) and u∗(x, s) at fixed s = 0.5. The
bold lines are the perturbative results, the light lines are the numerical results. The
bold line labelled ε = 0 is the outer approximation.
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Chapter 3

Discussion and outlook

In the previous chapter we have calculated the segment density φ(x) that results

from the SST parabolic potential, to test whether indeed φ ≈ 1. Perturbative and

numerical methods agreed on the result shown in Figure 2.1a: the segment density

becomes large as x→ 0 and vanishes as x→ 1. To emphasise: the parabolic potential

does not almost satisfy the self-consistency relation φ = 1, in fact the segment density

is far from uniform. So what went wrong? Why does the parabolic potential not work?

3.1 Re-examining the parabolic potential

Firstly, we might go back to the original justification of the parabolic potential in the

SST of Section 1.3. We could object that the parabolic potential is only valid within

the SST (i.e. where only the ground-state paths are considered) and that it therefore

is not sensible to transfer the parabolic potential directly into the diffusion equations

of SCFT (where fluctuations around ground-state paths are considered). Indeed, it is

not clear a priori why the SST self-consistent field and the SCFT self-consistent field

should have any relation.

Nevertheless, Matsen showed [8], numerically, that the SCFT self-consistent field

converges to the parabolic potential in the strong stretching limit ε→ 0, although the

convergence is not uniform. More precisely, he showed that the deviation from the

parabolic potential is well-described by three corrections. The first two are referred

to as the “proximal layer” and were discovered by Likhtman and Semenov [6]. The

last was discovered by Matsen [7] and Matsen calls it either the “full classical theory”

or the “entropy due to free ends”. Each correction can be thought of as being of order

O(ε2) either in width or in height.
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Likhtman and Semenov’s first correction is simply ε2δ(x) so a delta function [6].

The second correction has no analytic formula yet, but numerically has height ord(1)

and vanishes for x� ε2 [6] so it has width O(ε2).

Matsen’s “full classical theory” correction is seen to be a global correction van-

ishing as ε → 0 [7]. Although he does not specify the order of this correction, he

does show that the parameter v20 that controls it has order O(ε2) [7], which makes it

plausible that this last full classical theory correction has order O(ε2) as well.

This seems to be a contradiction: Matsen showed numerically that the SCFT

self-consistent field converges to the parabolic potential, while we showed that the

parabolic potential gives rise to a far from uniform segment density. Assuming Mat-

sen’s numerical evidence is correct, the only possible conclusion is that corrections to

the parabolic potential still have an important effect on the segment density φ.

With our asymptotic analysis we can in fact explain why corrections of the

parabolic potential of order O(ε2) impact the segment density. The segment den-

sity is directly determined by the partial partition functions q and q∗, which in our

analysis are expressed as q = exp(σ/ε2) and q∗ = exp(σ∗/ε2). The quantities σ and

σ∗ are in turn determined by the potential through diffusion equations. Therefore,

order O(ε2) corrections of the parabolic potential will cause order O(ε2) corrections

to both σ and σ∗. These, in turn, will cause order O(1) multiplicative corrections to

q and q∗. Since q and q∗ directly determine the segment density φ, it is clear that

order O(ε2) corrections to the parabolic potential will have an important effect on

the segment density.
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3.2 Outlook

Ideally, we would like to use perturbation theory to predict the finite stretching cor-

rections and the parabolic potential itself. An ideal perturbative scheme would go

somewhat like this: expand the self-consistent field µ(x) = µ0(x) + µ1(x)ε2 + . . . ,

then solve the diffusion equations up to some desired order, then check up to what

order the self-consistency condition φ(x) = 1 can be satisfied. This should constrain

µ0(x), µ1(x), . . . , ideally giving the parabolic potential and, incrementally, smaller

finite stretching corrections.

Such a scheme could provide an analytic and systematic manner of generating or

estimating finite stretching corrections. These corrections could then also be used as

asymptotic evidence that SCFT converges to SST in the strong stretching limit. It

is clear that such a perturbative scheme could be very fruitful.

In this thesis, we have taken the first step in this perturbative scheme. We have

assumed that µ0(x) is parabolic (supported by numerical evidence [8]), and checked

if φ(x) = 1 was satisfied at least approximately. The answer, surprisingly, was that

φ was very far from uniform. We concluded that finite stretching corrections have a

large influence on φ.

To continue, we need to include finite stretching corrections of order up to O(ε2),

and find all order O(ε2) corrections to σ and σ∗, before we can approximately satisfy

φ = 1. Our work on the outer solutions of u and u∗, as well as on their inner layers,

will be valuable for this more general problem. Our outer asymptotic solution will

likely remain the outer asymptotic solution of the more general problem, and our inner

layer analysis at x = 1 will likely still apply, especially considering that Likhtman

and Semenov’s proximal layer is concentrated at x = 0.
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