
Sampling quantum ground states
with maximum entropy
reinforcement learning

Willem Gispen

Supervisor: Prof Austen Lamacraft

Department of Physics
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Corpus Christi College September 2020



Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except where specifically indicated in the text. This dissertation
contains fewer than 15,000 words, excluding tables, footnotes, bibliography, and appendices.

Willem Gispen
September 2020



Acknowledgements

I would like to thank Data-Piet Fonds (Prins Bernhard Cultuurfonds) and VSBFonds for
their financial support, as well as Corpus Christi College for accommodating me in such a
stimulating environment. I thank Prof Austen Lamacraft for his inspiring supervision and
Ariel Barr for our fruitful collaboration.



Abstract

Quantum ground states can be computed with deep reinforcement learning. To

be more specific, we design a maximum entropy reinforcement learning problem

equivalent to the ground state problem for stoquastic Hamiltonians. This is

done for both continuous and discrete state spaces and both continuous and

discrete time reinforcement learning. Furthermore, we show that deep learning

can numerically solve the resultant reinforcement learning problem in practice:

we demonstrate our approach using small atomic and molecular systems and spin

lattice models.
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Chapter 1

Introduction

1.1 Quantum ground states

Physical systems, when cooled to absolute zero temperature, attain a state that is known
as the ground state of that system. In a sense, it is the most stable state of that system,
and therefore, knowing the ground state gives insight into the behavior of that system at
and near absolute zero temperature. The ground state problem is studied by chemists and
physicists alike, and comes up, for example, in the study of magnetism, superconductivity
and stable configurations of molecules.

In quantum mechanics, the ground state is described by the ground state wavefunction
φ0 that solves the time-independent Schrödinger equation

Hφ0 = E0φ0. (1.1)

This Schrödinger equation is an eigenequation for the Hamiltonian operator H and the
ground state wavefunction φ0 is the unique1 eigenfunction for the smallest eigenvalue E0,
the ground state energy.

A sometimes more practical characterization of the ground state wavefunction comes
from the imaginary-time Schrödinger equation

∂tφ(t) = −Hφ(t) (1.2)

whose solution φ(t) approaches the ground state φ0 as t→∞.[17]
As an example of a quantum system we consider a collection of charged particles. Say we

have N particles of masses mi and charges qi. The Hamiltonian of this system consists of
kinetic terms − 1

2mi
∇2

i describing the kinetic energy of the particles and Coulomb interaction
terms qiqj

rij
describing the interaction between the charges when they are at a distance rij :

H = −
∑

i

1
2mi
∇2

i +
∑
i ̸=j

qiqj

rij
. (1.3)

In this example, the Hamiltonian is a partial differential operator, and the imaginary-time
Schrödinger equation becomes a partial differential equation. When solving this numerically
on a grid of linear size L, the wavefunction is defined on a grid of size L3N , so that the
complexity of the calculation increases exponentially with the number of particles.

1We only consider non-degenerate ground states in this thesis.
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As another example, we consider the transverse field Ising model. This is a quantum spin
lattice model, where the basic degrees of freedom are not positions of particles in continuous
space, but rather the spins of particles living on a lattice. In the Ising case, it means that
each site is assigned a spin-1/2 particle and that the interactions −σz

i σz
j between particles i

and j tend to align these spins. In addition, there is a transverse field −σx
i that tends to flip

spins randomly, so that the total Hamiltonian becomes

H = −
∑
⟨i,j⟩

σz
i σz

j −
∑

i

σx
i (1.4)

where σx,z
i are Pauli spin matrices. In this example, the Hamiltonian is a matrix, and therefore

the imaginary-time Schrödinger equation is an ordinary differential equation describing the
evolution of a finite-dimensional vector. However, as the number of particles N increases, the
dimension of this vector grows as 2N , making it quickly intractable to solve the imaginary-time
Schrödinger equation.

To go around this ‘curse of dimensionality’, many numerical techniques have been
developed over the last century. Some of these use stochastic methods and are collectively
known as Quantum Monte Carlo methods. It turns out that applying stochastic methods is
considerably simpler if the sign structure of the ground state wavefunction is known.[5] In
this thesis, we will mostly study quantum ground states of ‘stoquastic’ [11] Hamiltonians, for
which the ground state wavefunction can be chosen positive.

1.2 Machine learning quantum ground states

Deep learning methods can address the curse of dimensionality, making it natural to use
deep learning to attack the quantum ground state problem. Most modern deep learning
approaches to quantum ground states find their origin in variational Monte Carlo. For a
review of these ‘Neural Quantum States’ and their limitations see [53].

In variational Monte Carlo, the ground state wavefunction is parameterized by a list
of parameters θ, and a Monte Carlo estimate is made of the variational energy of this
parameterized wavefunction. Then this variational energy is minimized with respect to the
parameters θ. Although this basic idea of parameterizing the wavefunction and minimizing
the variational energy is common to most approaches that we mention here, they differ in
their representation and optimization methods.

An early approach [24] is to represent the wavefunction with a Jastrow-Slater ansatz and
minimize the variational energy with stochastic gradient descent. Another early approach [34]
uses artificial neural networks, but optimizes the wavefunction with the collocation method,
i.e. minimizes the mean-squared error of the Schrödinger equation.
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More recently, Carleo and Troyer [7] rekindled interest in Neural Quantum States by using
Restricted Boltzmann Machines to represent the wavefunction, and stochastic reconfiguration
[46] to minimize the variational energy.

Most modern approaches use stochastic reconfiguration (e.g. [8, 37, 38]) or gradient
descent (e.g. [23, 25, 30, 43]) to optimize the variational energy and deep artificial neural
networks to represent the wavefunction. They mainly differ in the architectures of their deep
artificial neural networks. For example, deep convolutional neural networks are appropriate
for spin lattice models [8], while physical constraints like anti-symmetry [25, 38] or cusps [23,
25] can be built in for many electron problems.

1.3 Quantum mechanics and stochastic control

As we have seen, most deep learning approaches to quantum ground states use the Schrödinger
picture, i.e. they optimize the ground state wavefunction. However, there are formulations of
quantum mechanics different from the Schrödinger wave theory.

In particular, there is a (limited) formulation of quantum mechanics in terms of stochastic
control theory. Previous literature on this formulation only considered the continuous time
case. Additionally, it only considered continuous space single-particle Hamiltonians of the
form

H = − 1
2m
∇2 + V (s) (1.5)

where V (s) is the potential energy.
To start with, Holland [26] showed that the time-independent Schrödinger equation for the

ground state of this Hamiltonian can be converted into a Hamilton-Jacobi-Bellman equation.
This results in a stochastic optimal control problem, where minimization of the control cost
gives the ground state. We will revisit Holland’s formulation in Chapter 5 where we show
that it is a special case of our continuous time reinforcement learning formulation.2

Yasue [54] and Guerra and Morata [18], among others, aimed for a variational formulation
of Nelson’s stochastic mechanics. Again for the Hamiltonian (1.5), they showed that the
time-dependent Schrödinger equation can be reformulated as another stochastic control
problem. Theirs differs from Holland’s in two ways. Firstly, Yasue’s, Guerra and Morata’s
links are not limited to the ground state or to the time-independent case. Secondly, whereas
the ground state follows from minimization of Holland’s variational principle, in Yasue’s,
Guerra and Morata’s variational principles, the (excited) states give only extremal points (so
not necessarily minimums/maximums). This fact makes theirs less suitable for conversion
into a reinforcement learning objective.

2Stochastic optimal control and reinforcement are closely related, but reinforcement learning needs less
knowledge of its environment. We will only discuss reinforcement learning after this section.
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1.4 Outline

It is now possible to state the principle aims of this thesis. Firstly, we aim to recast the ground
state problem as a reinforcement learning problem, extending previous work to multiple
particles, discrete state spaces and discrete time. Secondly, we show how to solve the resultant
reinforcement learning problem efficiently with deep learning methods. This results in a
deep learning approach to quantum ground states that is fundamentally different from the
variational Monte Carlo techniques of Section 1.2.

The remainder of this thesis is organized as follows. Firstly, we will introduce the relevant
theory of Markov processes and Markov Chain Monte Carlo. This is complemented with a
presentation of the Feynman–Kac formula for stoquastic Hamiltonians (Chapter 2). Then we
review reinforcement learning and its entropy-regularized variant (Chapter 3). We make the
connection between the ground state problem and entropy-regularized reinforcement learning
in discrete time in Chapter 4, and in continuous time in Chapter 5. Next, we explain the
methods we used for neural network representation and loss function computation (Chapter
6). After showing numerical results for a range of quantum systems (Chapter 7), we conclude
with a comparison with other deep learning approaches and a discussion of how our approach
can be extended and improved (Chapter 8).

As a disclaimer: together with Prof Austen Lamacraft and Ariel Barr, I have published
an article [2] that partly overlaps with the contents of this thesis. The overlap is confined
to the continuous time approach for continuous state spaces. Although I have tried to give
a different perspective whenever possible, I have indicated (usually at the beginning of a
section) where this thesis follows the presentation of that article.



Chapter 2

Markov Chain Monte Carlo for
quantum ground states

In this chapter we introduce some elementary definitions and properties of Markov processes,
mainly to introduce our notation. Then we introduce a few methods of sampling from
unnormalized probability distributions using these Markov processes, collectively known as
Markov Chain Monte Carlo. Finally, we introduce the Feynman–Kac formula for quantum
ground states, which is the basis of many Markov Chain Monte Carlo approaches to finding
quantum ground states, including ours.

2.1 Markov processes

Markov processes are a type of random processes satisfying a property known as ‘memoryless-
ness’. They are ubiquitous throughout the natural sciences and beyond, describing processes
ranging from bacteria movements to financial markets.

For our purposes, a stochastic process is a family of random variables {ŝt}t∈I indexed by
a real parameter t ∈ I ⊂ R. The random variables take values in a state space S, so that a
realization of the stochastic process is a set of states {st}t∈I ⊂ S, also known as a trajectory
through state space.

Now a Markov process is a stochastic process as defined above, but then with memory-
lessness, also known as the Markov property. Informally, if you pick a time t ∈ I and the
trajectory is known up to that time and reaches a state st, then the rest of the trajectory, i.e.
after time t, only depends on this state st. To be more precise, the distribution of trajectories
{st}t′>t conditioned on the state st is equal to the distribution of trajectories conditioned on
the initial part of the trajectory {st}t′≤t.

We now turn to three concrete examples of Markov processes, and in fact these are the
only we will need.

2.1.1 Stochastic differential equations

Stochastic differential equations (SDEs) are used, for example, to describe financial markets
and Brownian motion. In physics, the Langevin equation is an example of an SDE.

A stochastic differential equation is an example of a Markov process with a continuous
state space. Intuitively, a trajectory describes a particle with position st ∈ Rn moving
through space with a drift velocity vt, disturbed by random displacements dwt:

dst = v(st, t)dt + dwt. (2.1)
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Here the random displacements dwt are given by the Wiener process, also known as standard
Brownian motion. 1 Stochastic differential equations are formalized using stochastic integrals
following the Ito calculus, see for example [32].

2.1.2 Discrete time Markov chains

Instead of being continuous, the time indexing a Markov process can also be discrete. In fact,
now we will give an example of a Markov process with a discrete time index and a general
state space.

A discrete time Markov chain describes a system changing state at discrete times t =
1, 2, . . . . At each step, the system randomly transitions following the transition probabilities
Ps→s′ between states. The set of transition probabilities Ps→s′ fully describes the discrete
time Markov chain.

2.1.3 Continuous time Markov chains

The same idea of a Markov chain can also be used in continuous time, but then the transition
probabilities Ps→s′ are replaced by transition rates Γs→s′ . The interpretation of the transition
rates is that the probability of moving from state s to state s′ in a small time step ∆t≪ 1 is

Ps→s′ =

Γs→s′∆t +O(∆t2) if s ̸= s′

1−
∑

s′ ̸=s Γs→s′∆t +O(∆t2) if s = s′
(2.2)

Another equivalent definition is that the state of the system is constant for a finite ‘holding
time’ distributed according to an exponential distribution with rate

∑
s′ ̸=s Γs→s′ . Then, after

this holding time the system transitions into the new state s′ with probability

Ps→s′ = Γs→s′∑
s′ ̸=s Γs→s′

. (2.3)

2.2 Markov chain Monte Carlo

One of the most important applications of Markov processes is Markov chain Monte Carlo. It
allows efficient sampling from unnormalized distributions over large state spaces.We describe
one particular method called the Metropolis-adjusted Langevin algorithm (MALA).

2.2.1 Detailed balance conditions

To sample from a known (but unnormalized) probability distribution ρ, Markov chain Monte
Carlo methods construct a Markov process such that its stationary distribution is the desired

1Generally, the random displacements can differ in strength and direction, which is modeled with a diffusion
coefficient in the SDE.
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probability distribution. By simulating many of these Markov processes for long times, one
can sample from ρ. To ensure that a Markov process has ρ as its stationary distribution, the
detailed balance conditions are normally used.

For a discrete time Markov chain with transition probabilities P ∗
s→s′ to have ρ(s) as its

stationary distribution, the detailed balance conditions suffice:

P ∗
s→s′ρ(s) = P ∗

s′→sρ(s′). (2.4)

For a continuous time Markov chain with transition rates Γ∗
s→s′ , the detailed balance

conditions are similarly
Γ∗

s→s′ρ(s) = Γ∗
s′→sρ(s′). (2.5)

2.2.2 MALA with a stochastic differential equation

To sample from a continuous probability distribution ρ, we can use a stochastic differential
equation with a drift derived from the probability distribution. This idea, together with a
correction for discrete time steps, is known as the Metropolis-adjusted Langevin algorithm
(MALA). [40, 41]

To be specific, if we use the gradient of the logarithm of the probability distribution

v = 1
2∇ log ρ (2.6)

as a drift, then the stationary state of the stochastic differential equation

ds = vdt + dw (2.7)

is exactly ρ. [41] Therefore, starting from any initial distribution of states, we can run the
SDE above for a long time, and eventually, the resultant states will be samples from the
probability distribution ρ.

In practice, this SDE is solved with discrete time steps ∆t, for example with the Euler–
Mayurama algorithm

∆s = v∆t + ∆w. (2.8)

This time discretization introduces a bias, which is corrected with a Metropolis–Hastings
acceptance step. The discretization is used to propose a move ∆s to a new state s′ = s + ∆s,
which is then accepted with probability

α = min
{

1,
ρ(s′)
ρ(s)

Ps′→s

Ps→s′

}
(2.9)

where Ps→s′ is the probability density of proposing a move s→ s′. Using the detailed balance
conditions, one can check that MALA has ρ as its stationary distribution.[41]



8 Markov Chain Monte Carlo for quantum ground states

2.2.3 ‘MALA’ with a Markov chain

With a discrete state space, we can also use a Metropolis–Hasting algorithm: use some
transition probabilities Ps→s′ to propose moves and then accept these moves with probability
(2.9). However, in a discrete state space, it is less clear how to choose the transition
probabilities Ps→s′ .

Consider the example of a quantum spin model. In this case, the Hamiltonian provides
a natural description of which states are ‘adjacent’: states s ̸= s′ are adjacent iff Hss′ ̸= 0.
So in this case it seems natural to consider transitions between adjacent states. A simple
technique is to use transition probabilities that are equal for all adjacent states, and zero
otherwise.

As an alternative, we can adapt the Metropolis-adjusted Langevin algorithm to a Markov
chain with a discrete state space as follows. Define transition rates between adjacent states as

Γ∗
s→s′ =

√
ρ(s′)
ρ(s) (2.10)

and transition rates between non-adjacent states to be zero. One can easily check that with
this choice, the transition rates satisfy the detailed balance conditions, so the continuous
time Markov chain has ρ as its stationary distribution. If Γ∗ is known exactly, this can be
used to sample from ρ without a Metropolis–Hastings acceptance step.

However, an approximation Γθ ≈ Γ∗ will create a bias. Again, this can be corrected with
a Metropolis–Hasting acceptance step. Similar to the continuous space case, we do this by
moving to a discrete time Markov chain. At discrete time steps, the transition rates above
are used to propose a move s→ s′ ̸= s (the holding times are discarded), i.e. the transition
probabilities are

Ps→s′ = Γθ
s→s′∑

s′ ̸=s Γθ
s→s′

(2.11)

Then the move is accepted with the Metropolis–Hastings probability (2.9), which guarantees
that this will sample from ρ.

In this case, the Metropolis–Hasting step is even more important than in the continuous
space case: even if Γ∗ is exactly known, discarding the holding times creates a bias that must
be corrected.

2.3 Stoquastic Hamiltonians

Before we show how to link the previous Markov process with quantum ground states using
the Feynman–Kac formula, we introduce the class of Hamiltonians to which the Feynman–
Kac formula applies. This is the class of stoquastic Hamiltonians, and apart from defining
stoquasticity, we give examples of some stoquastic and some non-stoquastic Hamiltonians.
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Our method is primarily meant for stoquastic Hamiltonians, so this section also introduces
models we will experiment with.

2.3.1 Spin-lattice models

Stoquasticity is a statement about a Hamiltonian matrix that depends on the basis used for
the matrix representation. Given a matrix representation of a Hamiltonian in a certain basis,
the Hamiltonian matrix is stoquastic if the Hamiltonian matrix has real and non-positive
off-diagonal elements. Nevertheless, we will also call the Hamiltonian operator itself stoquastic
if there is a known basis for which the Hamiltonian matrix is stoquastic.

Stoquasticity for a Hamiltonian matrix H implies that we can decompose the Hamiltonian
matrix as

H = −Γ + V (2.12)

where Γ is a transition rate matrix and V is diagonal. The interpretation is as follows. Γ is
the kinetic term and defines a continuous time Markov chain: the ‘passive dynamics’. The
second term is the potential V . In terms of the Hamiltonian, the passive transition rates are
given by

Γs→s′ =

−Hss′ if s ̸= s∑
s′ ̸=s Hss′ if s = s′

(2.13)

and the potential is given by
V (s) = Hss +

∑
s′ ̸=s

Hss′ . (2.14)

The passive transition rates (2.13) describe a continuous time Markov chain. The
transitions are between states s ̸= s′ that satisfy Hss′ ̸= 0. We will call such states ‘adjacent’.
An important property of stoquastic Hamiltonians is the following: if the passive dynamics
(2.13) is ergodic, then the ground state wavefunction can be chosen positive in the stoquastic
basis [11], i.e.

φ0(s) > 0. (2.15)

This is a consequence of the Perron-Frobenius theorem.
In the following, we give examples of stoquastic (Ising, XY, AFH) and non-stoquastic

(J1-J2) spin-lattice model Hamiltonians. The stoquastic Hamiltonians we consider all satisfy
this ergodic property so that the ground state wavefunction may be chosen positive. We
make use of the z-spin basis, i.e. a basis state s = (s1, s2, . . . , sN ) measures the spin si of
each site i in the z-direction. The total number of spin sites is denoted by N .
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Fig. 2.1 Two adjacent Ising spin states: one spin can be flipped (red icon) to obtain the new
state (on the right).

Transverse field Ising model

First consider the transverse field Ising model

H = −J
∑
⟨i,j⟩

σz
i σz

j − h
∑

i

σx
i . (2.16)

where the first sum is over all nearest neighbors ⟨i, j⟩ and the second sum is over all sites i.
In the z-spin basis this becomes

⟨s′|H|s⟩ = −J
∑
⟨i,j⟩

sisj ⟨s′|s⟩ − h
∑

i

⟨s′|σ+
i + σ−

i |s⟩ . (2.17)

Therefore, states s and s′ are adjacent if si = s′
i for each site i except one, which is illustrated

in Figure 2.1. The passive transition rates are

Γs→s′ = h (2.18)

if s and s′ are adjacent and zero otherwise. Following (2.14), the potential becomes

V (s) = −
∑
s′ ̸=s

Γs→s′ + Hss (2.19)

= −hN − J
∑
⟨i,j⟩

sisj . (2.20)
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Fig. 2.2 Two adjacent XY spin states: a pair of unequal neighboring spins can be flipped to
obtain the new state (on the right).

XY model

As another example, the XY model is described by the Hamiltonian

H = −1
2
∑
⟨i,j⟩

σx
i σx

j + σy
i σy

j . (2.21)

In the z-basis this Hamiltonian becomes

⟨s′|H|s⟩ = −
∑
⟨i,j⟩
⟨s′|σ+

i σ−
j + σ−

i σ+
j |s⟩ . (2.22)

Therefore, states s and s′ are adjacent if you can obtain s′ from s by first picking a pair
of nearest neighbors ⟨i, j⟩ for which si ≠ sj , then setting s′

i = sj and s′
j = si, i.e. swap the

values of si and sj . This is illustrated in Figure 2.2. The transition rates are

Γs→s′ = 1 (2.23)

if states s and s′ are adjacent and zero otherwise. The potential becomes

V (s) = −
∑
s′ ̸=s

Γs→s′ (2.24)

= −
∑
⟨i,j⟩

(ni(1− nj) + nj(1− ni)) (2.25)

where ni = si + 1
2 .
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Antiferromagnetic Heisenberg model

Next consider the antiferromagnetic Heisenberg model

H = J

2
∑
⟨i,j⟩

σx
i σx

j + σy
i σy

j + σz
i σz

j . (2.26)

In the z-basis this Hamiltonian becomes

⟨s′|H|s⟩ = J
∑
⟨i,j⟩
⟨s′|σ+

i σ−
j + σ−

i σ+
j |s⟩+ J

2
∑
⟨i,j⟩

s′
isj ⟨s′|s⟩ (2.27)

This means that the z-basis does not give a stoquastic representation of the antiferromagnetic
Heisenberg model. For a bipartite lattice however, we know the sign structure of the ground
state wavefunction. The Marshall sign rule [8, 36] states that if MA(s) is the number of
up spins of the state s on the first bipartite sublattice, then the ground state wavefunction
satisfies

φ0(s) = (−1)MA(s)φ̃0(s) (2.28)

where φ̃0 is positive. Using this sign rule, we can transform the Hamiltonian by bosonization
σ±

i = ϵib
±
i , where ϵi equals +1 if i is on the first sublattice and −1 if i is on the second

sublattice. [51] This gives the transformed Hamiltonian

H = EN −
J

2
∑
⟨i,j⟩

b+
i b−

j + b−
i b+

j + J
∑
⟨i,j⟩

n̂in̂j (2.29)

where EN = −JNZ/8 is the energy of the Neel state, Z is the coordination number of the
lattice (4 for the square lattice) and n̂i = b+

i b−
i counts the number of bosons on site i.

In the occupation number basis |n⟩, this becomes

⟨n|H|n′⟩ = −J

2
∑
⟨i,j⟩
⟨n|b+

i b−
j + b−

i b+
j |n

′⟩+ (EN + J
∑
⟨i,j⟩

ninj) ⟨n|n′⟩ (2.30)

where ni is the number of bosons on site i. So states n and n′ are adjacent in the same way
as XY states are adjacent. We get the passive transition rates

Γn→n′ = J

2 (2.31)
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if states n and n′ are adjacent and zero otherwise. The potential is

V (n) = −
∑

n′ ̸=n

Γn→n′ + Hnn (2.32)

= EN − J
∑
⟨i,j⟩

ni(1− nj) + nj(1− ni) + ninj . (2.33)

J1-J2 model

A generalization of the Heisenberg model is the J1-J2 model

H = J1
∑
⟨i,j⟩

σi · σj + J2
∑

⟨⟨i,j⟩⟩
σi · σj (2.34)

where the first sum is over nearest neighbors ⟨i, j⟩ and the second over next-nearest neighbors
⟨⟨i, j⟩⟩. The J1-J2 model includes the antiferromagnetic Heisenberg model when J2 = 0.
Similar to the Heisenberg case, in the z-basis the Hamiltonian becomes

⟨s′|H|s⟩ =2J1
∑
⟨i,j⟩
⟨s′|σ+

i σ−
j + σ−

i σ+
j |s⟩+ 2J2

∑
⟨⟨i,j⟩⟩

⟨s′|σ+
i σ−

j + σ−
i σ+

j |s⟩ (2.35)

+ J1
∑
⟨i,j⟩

s′
isj ⟨s′|s⟩+ J2

∑
⟨⟨i,j⟩⟩

s′
isj ⟨s′|s⟩ . (2.36)

Once again, this is not a stoquastic representation. In contrast with the antiferromagnetic
Heisenberg model, for the J1-J2 no stoquastic representation is known.

2.3.2 Continuous state space

Although stoquasticity is a statement about Hamiltonian matrices, it can also be given a
meaning in continuous state space. A Hamiltonian is stoquastic if the Hamiltonian matrix is
stoquastic in a discretized position basis.[11] Therefore, any system of interacting bosons or
distinguishable particles (or systems that can be treated as such) is stoquastic in the position
basis. [11] Just like in the discrete case (2.15), stoquastic Hamiltonians have ground state
wavefunctions that can be chosen positive, i.e.

φ0(s) > 0. (2.37)

For the examples below and for the rest of this thesis, we use Hartree atomic natural
units me = e = ℏ = a0 = Eh = ke = 1 throughout, as well as the Born–Oppenheimer
approximation.
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Hydrogen atom

The hydrogen atom consists of a positively charged proton and a negatively charged electron.
With s ∈ R3 the position of the electron relative to the position of the proton, the Hamiltonian
is

H = −1
2∇

2 + V (s) = −1
2∇

2 − 1
|s|

. (2.38)

For the Hydrogen atom, the ground state wavefunction is known exactly to be

φ0(s) = 1√
π

e−|s|. (2.39)

with ground state energy E0 = −1
2 .

Helium atom

The Helium atom consists of a nucleus of charge +2 and two electrons of charge −1. The
Hamiltonian is

H = −1
2
(
∇2

r1 +∇2
r2

)
− 2
|r1|
− 2
|r2|

+ 1
|r1 − r2|

(2.40)

where r1, r2 measure the distance of the electrons from the nucleus. Although this is a
system of two electrons (so fermions not bosons), it is known that that the ground spin state
is anti-symmetric (parahelium), so that the spatial ground state wavefunction is symmetric.
Therefore, to find the spatial ground state wavefunctions, they may be treated as bosons, so
that this may be treated as a stoquastic Hamiltonian.

Hydrogen molecule

The Hydrogen molecule consists of two nuclei of charge +1 each and two electrons of charge
−1. The nuclei are separated by a distance R, and for definiteness we place the nuclei at the
positions ±Rẑ/2. The Hamiltonian is

H = −1
2
(
∇2

r1 +∇2
r2

)
+ 1

R
+ 1
|r1 − r2|

− 1
|r1 −Rẑ/2|−

1
|r1 + Rẑ/2|−

1
|r2 −Rẑ/2|−

1
|r2 + Rẑ/2|

(2.41)
where s1, s2 are the positions of the electrons with respect to the origin. This is another case
where the ground spin state is anti-symmetric (parahydrogen), so that it may be treated as a
stoquastic Hamiltonian.

Notation for multi-particle systems

In this thesis, we generally denote the state of a system with s. So for the Helium atom and
Hydrogen molecule, the state s is a 6-dimensional vector s = (r1, r2). In general, the state
for N particles is a 3N -dimensional vector s = (r1, . . . , rN ). This situation should be kept in
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mind at all times: for example differential operators such as ∇2
s and vector fields v(s) are

3N -dimensional. This allows us to present statements and proofs that are simultaneously
valid for single- and multi-particle systems.

2.4 Feynman–Kac formula

Now we return to the quantum ground state problem. The Markov chain Monte Carlo
algorithms discussed earlier apply to sampling from the ground state probability density: if
we set ρ = |φ0|2 we can use Markov chain Monte Carlo to sample from |φ0|2. However, the
ground state wavefunction φ0 is the unknown in the ground state problem. The Feynman–
Kac formula is a method of solving for φ0 using Markov processes. To be more specific,
it is a stochastic solution of the imaginary time Schrödinger equation (1.2). In turn, the
Feynman–Kac formula is the basis of Quantum Monte Carlo methods such as path-integral
Monte Carlo.

We present the Feynman–Kac formula for the case of stoquastic Hamiltonians only. In
this case, it does not suffer from the so-called ‘sign problem’.

2.4.1 Feynman–Kac formula for continuous state space

We want to solve the imaginary time Schrödinger equation (1.2) with some terminal condition
φ(st+T , t + T ). The Feynman–Kac formula states that the solution at the earlier time t can
be expressed as an expectation

φ(st, t) = E
P

[
exp

(
−
∫ t+T

t
V (st′) dt′

)
φ(st+T , t + T )

]
(2.42)

over the measure P of Brownian trajectories starting at st at time t.
Although this may not seem immediately useful because it goes backwards in time, it

also implies another characterization of the ground state wavefunction. Because we know
that φ(st, t) = e−E0tφ0(st) is an exact solution of the imaginary time Schrödinger equation,
the Feynman–Kac formula implies

φ0(st) = E
P

[
exp

(
−
∫ t+T

t
(V (st′)− E0) dt′

)
φ0(st+T )

]
, (2.43)

where again the expectation is over Brownian trajectories starting at st at time t. Reversely,
if there is a positive wavefunction φ and a constant E satisfying (2.43), then φ = φ0 and
E = E0. The reason is that (2.43) implies (via the imaginary time Schrödinger equation)
that φ is a positive eigenfunction of H, and φ0 is the only such eigenfunction.
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2.4.2 Feynman–Kac formula for discrete state space

The Feynman–Kac formula has a less well known extension to discrete spaces. For a stoquastic
Hamiltonian with passive rates Γ and potential V , the Feynman–Kac solution of the imaginary
time Schrödinger equation with terminal condition φ(st+T , t + T ) becomes [42]

φ(st, t) = E
P

[
exp

(
−
∫ t+T

t
V (st′)dt′

)
φ(st+T , t + T )

]
(2.44)

where the expectation is over trajectories following the passive dynamics Γ starting at st

at time t. So the Feynman–Kac formula takes the exact same form as in the continuous
case (2.42), with the only difference being the measure P: in the continuous case this is the
measure of Brownian dynamics, whereas in the discrete case it is the measure of trajectories
following passive dynamics given by the transition rates (2.13). Therefore, we also get the
same characterization of the ground state (2.43) for the discrete case.



Chapter 3

Maximum entropy reinforcement learning

Informally, in reinforcement learning an agent tries to make optimal decisions. Each decision
is judged with a certain reward, and the goal of the agent is to maximize the total reward
over its lifetime. Reinforcement learning algorithms can be used to solve problems ranging
from lift management, reactor control and computer games.

In this chapter, we start with the most common formulation of reinforcement learning.
Afterwards, we summarize maximum entropy reinforcement learning. This is a common
regularization strategy in modern reinforcement learning algorithms. Lastly, we review work
by Todorov on linearly solvable maximum entropy reinforcement learning problems.

3.1 Reinforcement learning

This section follows Sutton and Barton. [47]
Reinforcement learning is usually formulated in terms of a Markov decision process, which

is an extension of a discrete time Markov process. In a discrete time Markov process, the
state st at time t changes according to some transition probabilities Pst→s′ . The discrete
time Markov process is extended in two ways: there is a notion of control and a notion of
reward. In a Markov decision process, an agent, after observing the state s, chooses an action
a (control). Following that action, the state changes to state s′ with transition probability
Ps→s′(a). Finally, the agent is rewarded for its action with a reward r(s, a, s′). Generally,
the goal of the agent is to choose its actions optimally so that it maximizes the total reward
it receives.

There are multiple variants of reinforcement learning problems, but we will focus on the
case of a deterministic environment and an infinite time horizon with an objective of averaged
reward. In this case, the next state depends deterministically on the action chosen: s′ = a(s)
(deterministic environment), so that the reward r(s, a) also only depends on the current state
and action. Finally, the objective is to maximize the average reward R over infinite time.
That is, the performance of a policy π that takes actions at in state st is measured by the
objective function

Rπ = lim
T →∞

1
T

T∑
t=0

r(st, at), s0 = s, at = π(st) (3.1)

for any initial state s0. Note that this independent of the chosen initial state s0. The policy
that maximizes the objective function is known as the optimal policy π∗ i.e.

R∗ = Rπ∗ = max
π
{Rπ} . (3.2)
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A common strategy for solving reinforcement leaning problems is to estimate the optimal
value U∗(s) of a state s. The optimal value U∗(s) of s is basically the total reward relative
to R∗ over infinite time starting from the state s and following the optimal policy π∗

U∗(s) = lim
T →∞

T∑
t=0

(r(st, at)−R∗) , s0 = s, at = π∗(st). (3.3)

The idea is that if you know which actions lead to which states, then you simply select
the action that leads to the state with the highest value. Since the optimal policy is not
known, it cannot be used to compute the value function U∗. Instead, the value function U∗

satisfies the Bellman optimality equation

U∗(s) = −R∗ + max
a
{r(s, a) + U∗(a(s))} (3.4)

which can be solved for U∗.
If it is not known which actions lead to which states, then the action-value function

Q(s, a) is used instead. This is defined as the total reward relative to R∗ over infinite time
starting from the state s and the action a, and then following the optimal policy:

Q∗(s, a) = lim
T →∞

T∑
t=0

(r(st, at)−R∗) , s0 = s, a0 = a, at = π∗(st). (3.5)

Similar to the value function U∗, the action-value function Q∗ satisfies a Bellman optimality
equation

Q∗(s, a) = −R∗ + r(s, a) + max
a′
{Q∗(a(s), a′)} (3.6)

which can be solved for Q∗. If, somehow, a solution Q∗ has been obtained, the optimal policy
follows from Q∗ by taking the action that has the largest action-value, i.e.

a∗(s) = π∗(s) = argmax{Q∗(s, a)}. (3.7)

3.2 Maximum entropy reinforcement learning

This section is based on [16, 19, 47, 50].
The usual reinforcement learning objective of maximizing average reward leads to deter-

ministic policies. This can lead to instabilities in reinforcement learning algorithms. One
attempt to alleviate this is to extend the reward with a term that promotes policies that are
as random as possible. This strategy leads to the theory of maximum entropy reinforcement
learning. For reinforcement learning problems, the advantages range from improved stability,
exploration, and transfer learning.[35]
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We consider the same setting as before, a deterministic environment with infinite time
averaged rewards, but now we allow for stochastic policies. This means that an agent,
observing state s, chooses action a with probability π(a|s). The entropy regularization is
ensured by the replacement

r(s, a)→ r(s, a) +H(π(·|s)||p(·|s)) (3.8)

in the objective Rπ where H(π(·|s)||p(·|s)) is the relative entropy1 of the policy π with respect
to some reference policy p

H(π(·|s)||p(·|s)) = − E
a∼p(·|s)

[
dπ

dp
log

(
dπ

dp

)
(a|s)

]
(3.9)

and dπ(·|s)
dp(·|s) is the Radon–Nikodym derivative of π with respect to p. So the entropy-regularized

objective is to maximize

Rπ = lim
T →∞

1
T

T∑
t=0

r(st, at) +H(π(·|st)||p(·|st)). (3.10)

The value function U∗ and the action-value function Q∗ are changed accordingly. Therefore,
the Bellman optimality equations are replaced by their ‘soft’ counterparts: the soft Bellman
optimality equations

U∗(s) = −R∗ + log E
a∼p(·|s)

[exp (r(s, a) + U∗(a(s)))] (3.11a)

Q∗(s, a) = −R∗ + r(s, a) + log E
a′∼p(·|a(s))

[
exp

(
Q∗(a(s), a′)

)]
(3.11b)

where the expectations are according to the reference policy p.
When there are a finite number of actions and the reference policy is uniform, it is easier

to see how these are the ‘soft’ version of the earlier Bellman optimality equations (3.4) and
(3.6): in this case we recognize the LogSumExp function which can be interpreted as a soft
version of the maximum function.

Before, the optimal policy was derived from Q∗ using the argument of the maximum, but
in maximum entropy reinforcement learning, the optimal policy follows instead from the soft
argument of the maximum, i.e.

π∗(a|s) = exp(Q∗(s, a))
Ea′∼p(·|s) [exp (Q∗(s, a′))] . (3.12)

1The negative relative entropy is also called the Kullback-Leibler (KL) divergence, and this regularization
strategy is therefore sometimes called KL-regularization. If the reference policy p is uniform, then the relative
entropy reduces to the Shannon entropy.
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3.3 Linearly solvable maximum entropy reinforcement learn-
ing problems

Todorov [50] showed that for action-independent rewards, the soft Bellman optimality equation
(3.11a) can be transformed into a linear equation.

Consider action-independent rewards r(s, a) = r(s). The key is an exponential transfor-
mation to the ‘desirability’ z of a state

z(s) = exp(U∗(s)). (3.13)

By simply exponentiating the soft Bellman optimality equation (3.11a), we obtain

z(s) = er(s)+R∗
E

a∼p(·|s)
[z(a(s))] , (3.14)

which is indeed a linear equation for the desirability z.
It is worth stressing again that our reinforcement learning formulation is only one of

many. Notably, the objective function (3.10) may be adapted to continuous time, finite time
horizons and discounted rewards. The linearization of the soft Bellman optimality equation
is possible in many of these cases. For example, see [28] and [48] for continuous time and
space, or [14] and [50] and for a more general overview.



Chapter 4

Quantum ground states from discrete-time
reinforcement learning

In this chapter, we show how to reformulate the quantum ground state problem as a soft
Bellman optimality equation. As we have seen in Section 3.3, Todorov [50] proved that in a
special case the soft Bellman optimality equation can be converted into a linear equation. In
this chapter, we effectively use the opposite direction: we transform linear equations – the
Feynman–Kac formula and the Schrödinger equation – into a soft Bellman optimality equation
(this idea is from [2]). We do this for stoquastic Hamiltonians only. In the non-stoquastic
case, we show that the Schrödinger equation is instead equivalent to a complex-valued soft
Bellman equation.

To informally motivate the developments of the coming sections, we consider the logarithm
of the Feynman–Kac formula

log φ(st, t) = logE
P

[
exp

(
−
∫ t+T

t
V (st′)dt′ + log (φ(st+T , t + T ))

)]
. (4.1)

This is very similar to a soft Bellman equation (3.11a), particularly if you define the state-value
function U(s, t) = log φ(s, t) and reward r = −

∫
V (st′)dt′. Then you get

U(s, t) = logE
P

[exp (r + U(st+T , t + T ))] (4.2)

which is almost a soft Bellman optimality equation.

4.1 Discrete time Feynman–Kac and soft Bellman

In this section, we consider only stoquastic Hamiltonians. In the stoquastic case, we know
that the ground state wavefunction is strictly positive. Moreover, we deal with continuous
and discrete state spaces simultaneously. For both cases, we have an identical Feynman–Kac
characterization of the ground state (2.43). The only difference is in the meaning of the
measure of the passive dynamics P: for continuous state spaces, this corresponds to the
dynamics of Brownian motion, whereas for discrete state spaces, it corresponds to the passive
dynamics of the continuous time Markov chain (2.13).

For clarity, we repeat the Feynman–Kac characterization of the ground state (2.43)

φ0(st) = E
P

[
exp

(
−
∫ t+T

t
(V (st′)− E0) dt′

)
φ0(st+T )

]
. (4.3)
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For a small time step T = ∆t, this implies

φ0(s) = E
P

[
exp(−(V (s)− E0)∆t +O(∆t2))φ0(st+∆t)

]
(4.4)

= er(s)+E0∆t E
P

[φ0(st+∆t))] +O(∆t2) (4.5)

where the reward is defined as
r(s) ≡ −V (s)∆t. (4.6)

Definition of the action space

Although (4.5) already looks very similar to Todorov’s linear equation for the desirability
(3.14), we still have to rewrite the expectation over paths of length ∆t in terms of actions.
That is, we replace the expectation over trajectories P with an expectation with respect to
a ‘passive policy’ p∆t(·|s). This passive policy is a discrete time approximation of P and is
therefore different for continuous and discrete state spaces.

In the continuous case, the actions are displacements a = ∆s and they act on a state
by addition a(s) = s + ∆s. Since the passive dynamics is Brownian, the passive policy is a
normal distribution with zero mean and variance ∆t:

p∆t(·|s) = N(0, ∆t) (4.7)

In the discrete case, an action is either a move to an adjacent state, or the trivial action
a0 of doing nothing, i.e. a0(s) = s. Since P is characterized by the transition rates (2.13),
the passive policy becomes

p∆t(a|s) =

Γs→a(s)∆t if a ̸= a0

1−
∑

Γs→a(s)∆t if a = a0.
(4.8)

With these definitions of the passive policy p∆t, we can further rewrite (4.5) as

φ0(s) = er(s)+E0∆t E
a∼p∆t(·|s)

[φ0(a(s)))] +O(∆t2). (4.9)

Soft Bellman optimality equations

We recognize this as the same equation as Todorov’s linear equation for the desirability (3.14).
Therefore, if we define the state-value function U∗(s) = log φ0(s), we get the soft Bellman
optimality equation (3.11a)

U∗(s) = E0∆t + log E
a∼p∆t(·|s)

[exp (r(s) + U∗(a(s)))] . (4.10)



4.1 Discrete time Feynman–Kac and soft Bellman 23

Fig. 4.1 The soft Bellman equation (4.10) visualized as a Bellman backup diagram.

Because generally Q∗(s, a) = r(s, a)−R∗ + U∗(a(s)) (this follows from the definitions (3.3),
(3.5)), this also implies that the action-value function

Q∗(s, a) = r(s) + E0∆t + log φ0(a(s)) (4.11)

satisfies the soft Bellman optimality equation (3.11b)

Q∗(s, a) = r(s) + E0∆t + log E
a′∼p∆t(·|a(s))

[
exp

(
Q∗(a(s), a′)

)]
. (4.12)

Obtain the wavefunction

Finally, we show how to obtain the ground state wavefunction φ0 from a solution Q of the
soft Bellman optimality equation (4.12). Since E0 is a priori unknown, by a solution we mean
a function Q and a constant E such that

Q(s, a) = r(s) + E∆t + log E
a′∼p∆t(·|a(s))

[
exp

(
Q(a(s), a′)

)]
. (4.13)

If you have such a solution Q, we define the wavefunction

φ(s) = E
a∼p∆t(·|s)

[exp(Q(s, a))] . (4.14)

With this definition, (4.13) implies that φ = φ0, E = E0 and Q = Q∗.
Firstly, (4.13) implies that φ satisfies

φ(s) = er(s)+E∆t E
a∼p∆t(·|s)

[φ0(a(s)))] . (4.15)
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Following previous arguments in the opposite direction, this implies that

φ(st) = E
P

[
exp

(
−
∫ t+T

t
(V (st′)− E) dt′

)
φ(st+T )

]
, (4.16)

i.e. φ0 satisfies the Feynman–Kac characterization of the ground state wavefunction. Therefore
φ = φ0 and E = E0, giving Q = Q∗ as well.

4.2 Schrödinger and (complex) soft Bellman

We begin this section by giving another proof of (4.9). Although this proof is less intuitive
and only valid for finite state spaces, it can be adapted to non-stoquastic Hamiltonians.

With the non-stoquastic case in mind, consider a Hamiltonian H. The time-independent
Schrodinger equation can be written as

(Hss − E)φ(s) = −
∑

Hs,a(s)φ(a(s)). (4.17)

Introducing a time step ∆t > 0, we can rewrite this as

(1 + (V (s)− E)∆t)φ(s) = −∆t
∑

Hs,a(s)φ(a(s)) +
(
1 + ∆t

∑
Hs,a(s)

)
φ(s) (4.18)

where V (s) ≡ Hss +
∑

Hs,a(s). Now for ∆t≪ 1 this is equivalent to

φ(s) = 1
1 + (V (s)− E)∆t

[
−∆t

∑
Hs,a(s)φ(a(s)) +

(
1 + ∆t

∑
Hs,a(s)

)
φ(s)

]
(4.19)

= e−V (s)∆t+E∆t
[
−∆t

∑
Hs,a(s)φ(a(s)) +

(
1 + ∆t

∑
Hs,a(s)

)
φ(s)

]
+O(∆t2)

(4.20)

Stoquastic case

Now if H is stoquastic, i.e. H = −Γ + V , this implies

φ(s) = e−V (s)∆t+E∆t E
a∼p∆t(·|s)

[φ(a(s))] +O(∆t2) (4.21)

where the passive policy p∆t is given by (4.8). So in the stoquastic case we have recovered
(4.9) as desired.

4.2.1 Complex Bellman equation for non-stoquastic Hamiltonians

If the Hamiltonian is not stoquastic, we can still transform (4.20) into something similar to a
soft Bellman optimality equation.
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To do this, we introduce, for any complex-valued function f : a 7→ f(a)

Ẽa∼p∆t(·|s) [f(a)] ≡ −∆t
∑

a̸=a0

Hs,a(s)f(a) +

1 + ∆t
∑

a̸=a0

Hs,a(s)

 f(a0). (4.22)

This is not really an expectation, because if H is non-stoquastic, it would contain negative
‘probabilities’. Nevertheless, this notation is useful because it allows us to translate the
developments of Section 4.1 to non-stoquastic Hamiltonians.

To start with, with this notation, (4.20) becomes

φ(s) = e−V (s)∆t+E∆tẼa∼p∆t(·|s) [φ(a(s))] +O(∆t2) (4.23)

which is the analog of (4.9). Therefore, the complex-valued action-value function

Q∗(s, a) = r(s) + E0∆t + log φ0(a(s)). (4.24)

satisfies the analog of the soft Bellman optimality equation (3.11b)

Q∗(s, a) = r(s) + E0∆t + log Ẽa′∼p∆t(·|a(s))
[
exp

(
Q∗(a(s), a′)

)]
, (4.25)

where the reward is r(s) = −V (s)∆t as before. In the same vein, we can recover the
wavefunction from a solution Q of this equation by

φ(s) = Ẽa∼p∆t(·|s) [exp(Q(s, a)] . (4.26)

The complex soft Bellman equation (4.25) differs in two important ways from the usual
soft Bellman equation (3.11b). Firstly, as stated before, the term containing Ẽ is not an
expectation. Therefore, it should be evaluated using its definition (4.22). Secondly, the
action-value function Q∗ is complex valued, whereas it is usually positive.

The second point means that care should be taken with the logarithm. Since ground
states can generally be taken real-valued, a convenient branch for the logarithm is the one
that excludes the negative imaginary line.

Although (4.25) differs from the standard soft Bellman optimality equation in these two
ways, we will see that we can still use standard reinforcement learning methods to solve it.



Chapter 5

Quantum ground states from continuous time
reinforcement learning

Usually, reinforcement learning is studied in discrete time and this is also what we presented
in Chapter 3. In the previous chapter, we have shown that the ground state problem is
equivalent to such a discrete time reinforcement learning problem. This equivalence holds up
to O(∆t2) where ∆t is the discrete time step. Therefore, it is natural to investigate the limit
∆t→ 0.

Doing this, we show that the quantum ground state problem is equivalent to a continuous
time reinforcement learning problem. Then we reinterpret this result using the Feynman–Kac
measure for continuous time trajectories. Finally, this results in a variational principle similar
to, but more general than, that of Holland [26].

5.1 Continuous time limit

In continuous time, the actions taken by an agent cannot be specified by a policy. The reason
is simple: the probability of taking an action in infinitesimal time is zero. Therefore, the
control of an agent is specified with a drift or with transition rates in continuous and discrete
state spaces, respectively. In other words, we move from discrete time Markov chains to
continuous time Markov chains and stochastic differential equations.

The following reinforcement learning problems arise naturally from the results of Chapter
4 using a continuous time limit. In the continuous space case, we are looking to optimize a
drift vθ with respect to the objective

R = − lim
T →∞

1
T

∫ T

0

(
V (st) + 1

2 |v
θ(st)|2

)
dt, (5.1)

where st follows the drift vθ. In the discrete case, we are looking to optimize transition rates
Γθ with respect to the objective

R = − lim
T →∞

1
T

∫ T

0

V (st) +
∑

s′ ̸=st

(
Γst→s′ − Γθ

st→s′ + Γθ
st→s′ log

(
Γθ

st→s′

Γst→s′

)) dt, (5.2)

where st follows the transition rates Γθ.

Proof: continuous state space

Following Todorov [50], we first show how a continuous time reinforcement learning problem
arises from the discrete time formulation. In continuous state space, the control is specified
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by a drift vθ(s), and the dynamics by the stochastic differential equation

dst = vθ(st)dt + dwt. (5.3)

This makes sense, because in Section 2.2.2 we have seen that with the right choice of vθ this
can sample from the ground state. Discretizing time gives

∆st = vθ(st)∆t + ∆wt, (5.4)

where ∆wt ∼ N(0, ∆t). Therefore, the policy π(·|s) corresponding to a drift vθ(s) is
Gaussian with mean vθ(s)∆t and variance ∆t. Comparing (4.7), we see that the passive
policy corresponds to vθ = 0. Furthermore, to compute the entropy-regularized reward (3.10),
we first claim that

H(π(·|s)||p∆t(·|s)) = −1
2 |v

θ(s)|2∆t (5.5)

which gives the entropy-regularized reward

Rπ = lim
T →∞

1
T

∑
t

(
r(st)
∆t
− 1

2 |v
θ(st)|2

)
∆t. (5.6)

Taking the limit ∆t→ 0, we get the objective

Rθ = lim
T →∞

1
T

∫ T

t=0

(
ṙ(st)−

1
2 |v

θ(st)|2
)

dt (5.7)

where ṙ(s) = lim∆t→0(r(s)/∆t).
In our case r(s) = −V (s)∆t, which means that the ground state problem is equivalent to

a continuous time reinforcement learning problem, where the goal is to find the drift vθ that
maximizes the objective (5.1).

Proof: discrete state space

Now we extend Todorov’s argument to discrete state spaces. In this case, the control is
specified by transition rates Γθ. Discretizing time gives

πθ(a|s) =

Γθ
s→a(s)∆t if a ̸= a0,

1−
∑

Γθ
s→a(s)∆t if a = a0.

(5.8)

Comparing with (4.8), we see that the passive policy of course corresponds to Γθ = Γ.
Next, we compute the relative entropy

H(πθ(·|s)||p∆t(·|s)) = ∆t
∑
s′ ̸=s

(
Γs→s′ − Γθ

s→s′ + Γθ
s→s′ log

(
Γθ

s→s′

Γs→s′

))
. (5.9)
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Again taking the limit ∆t→ 0 of the entropy-regularized objective (3.10), we arrive at
a continuous time reinforcement learning problem, where the goal is to find the transition
rates Γθ that maximize the objective (5.2).

5.2 Feynman–Kac measure

This section partly follows [2] for the continuous state space case. The interpretation using
the ground state drift/rates is novel, although a closely related variant with a time-dependent
drift has been published before.[15]

We reinterpret the previous results using the Feynman–Kac measure. The Feynman–Kac
characterization of the ground state (2.43) suggests a transformed measure PFK – on the
space of trajectories {st} – defined by the Radon–Nikodym derivative

log
(

dPFK
dP

)
≡ −

∫ T

0
(V (st)− E0)dt + log

(
φ0(sT )
φ0(s0)

)
. (5.10)

The Feynman–Kac characterization of the ground state is basically equivalent to the statement
that PFK as defined above is a normalized measure. In the following, we prove an interpretation
of PFK using the ground state drift

v∗ ≡ ∇ log φ0 (5.11)

and the ground state transition rates

Γ∗
s→s′ ≡ Γs→s′

φ0(s′)
φ0(s) . (5.12)

These are the MALA drift (2.6) and transition rates (2.10) for the ground state probability
density ρ = φ2

0. Essentially, the interpretation is that PFK measures the probability density
that a trajectory {st} has been generated by the ground state drift/transition rates.

In order to later make the connection with the reinforcement learning problem, we also
compute the Radon–Nikodym derivative between the Feynman–Kac measure and Pθ. In the
continuous case, Pθ measures the probability that a trajectory has been generated by the
drift vθ, and the Radon–Nikodym derivative becomes

log
(

dPθ

dPFK

)
=
∫ (

V (st)− E0 −
1
2 |v(st)|2

)
dt +

∫
v(st) · dst − log

(
φ0(sT )
φ0(s0)

)
. (5.13)
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In the discrete case, Pθ measures the probability that a trajectory has been generated by
the transition rates Γθ, and the Radon–Nikodym derivative becomes

log
(

dPθ

dPFK
(st)

)
=
∫ (

V (st)− E0 +
∑

s′ ̸=st

(Γst→s′ − Γθ
st→s′)

)
dt (5.14)

+
∑

n

log
(

Γθ
sn→sn+1

Γsn→sn+1

)
− log

(
φ0(sT )
φ0(s0)

)
.

Here st denotes the state at time t, s0 the state at time t = 0, sT at time t = T , and sn

denotes the state after n transitions have occurred.
Both (5.13) and (5.14) are relatively trivial consequences of (5.10). The proof of (5.10) is

the same in both cases: first we rewrite the time-independent Schrödinger equation in terms
of the ground state drift/rates, then we use Girsanov’s theorem (and its analog) to compute
the Radon–Nikodym derivatives.

Proof: continuous state space

Rewriting the time-independent Schrödinger equation in terms of v∗ gives

V (s)− E0 = 1
2
(
∇ · v∗(s) + |v∗(s)|2

)
. (5.15)

We can use this together with Girsanov’s theorem [32]

log
(

dPθ

dP

)
= −1

2

∫
|vθ|2dt +

∫
vθ · dst (5.16)

to compute the RN-derivative

log
(

dPFK
dP

)
= −1

2

∫
|v∗|2dt +

∫
v∗ds (5.17)

= −1
2

∫
|v∗|2dt− 1

2

∫
(∇ · v∗)dt +

∫
v∗ ◦ ds (5.18)

= −
∫

(V − E0)dt + log
(

φ0(sT )
φ0(s0)

)
(5.19)

where we used Girsanov’s theorem and Ito calculus. This proves (5.10) in the continuous
case and using Girsanov’s theorem again gives (5.13).

Proof: discrete state space

Rewriting the time-independent Schrödinger equation in terms of Γ∗ gives

∑
s′ ̸=s

Γ∗
s→s′ = Hss − E0. (5.20)
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We can use this with the analog of Girsanov’s theorem for continuous time Markov chains

log
(

dPθ

dP
(st)

)
=
∫ ∑

s′ ̸=st

(Γst→s′ − Γθ
st→s′) dt +

∑
n

log
(

Γθ
sn→sn+1

Γsn→sn+1

)
(5.21)

to compute the RN–derivative

log
(

dPFK
dP

)
=
∑

n

− ∑
s′ ̸=sn

(
Γ∗

sn→s′ − Γsn→s′
)

∆tn + log
(

Γ∗
sn→sn+1

Γsn→sn+1

) (5.22)

= −
∑

n

(
(V (sn)− E0) ∆tn + log

(
φ0(sn+1)
φ0(sn)

))
(5.23)

= −
∑

n

(V (sn)− E0) ∆tn + log
(

φ0(sT )
φ0(s0)

)
. (5.24)

Here we used the definition (2.14) of the potential V (s) = Hss −
∑

s′ ̸=s Γss′ . This proves
(5.10) in the discrete case and using (5.21) again gives (5.14).

5.3 Generalized Holland’s variational principle

This section follows [2] for the continuous state space case.
In this section we use (5.13) and (5.14) to derive a variational principle for the ground

state drift/rates. In the infinite time limit, this results in another proof of the reinforcement
learning objectives (5.1) and (5.2).

5.3.1 Finite time variational principle

The idea is to formulate a variational principle based on the Kullback–Leibler (KL) divergence
between the Feynman–Kac measure and Pθ:

DKL(Pθ||PFK) = E
Pθ

[
log

(
dPθ

dPFK

)]
. (5.25)

We have already computed the necessary Radon–Nikodym derivatives (5.13) and (5.14).
However, there are two unknowns in these expressions. The first is the ground state energy

E0. This can simply be dropped: because it is constant it does not affect the maximizer.
Dropping the ground state energy, the function to be maximized in the continuous case is

RT = − 1
T

E
Pθ

[∫ T

0

(
V (st)−

1
2 |v

θ(st)|2
)

dt +
∫ T

0
vθ(st) · dst − log

(
φ0(sT )
φ0(s0)

)]
. (5.26)
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where the expectation is over trajectories following the drift vθ. In the discrete case, the
function to be maximized is

RT = − 1
T

E
Pθ

∫ V (st) +
∑

s′ ̸=st

(Γst→s′ − Γθ
st→s′) dt (5.27)

+
∑

n

log
(

Γθ
sn→sn+1

Γsn→sn+1

)
− log

(
φ0(sT )
φ0(s0)

)]

where the expectation is over trajectories following the rates Γθ. Because E0 was dropped,
both (5.26) and (5.27) have a maximum value of −E0.

The other unknown in this expression is the ground state wavefunction φ0. If the initial
states are drawn from the stationary distribution of vθ / Γθ, then the term involving the
ground state wavefunction may also be dropped from (5.26) and (5.27). This leaves no
unknowns so that (5.26) and (5.27) provide usable variational principles.

If a drift vθ or rates Γθ has been found that attains the maximal value −E0, then these
must be the ground state drift/rates. If a drift/rates maximizes RT , then it also minimizes
the KL–divergence DKL(Pθ||PFK). Therefore, the measures Pθ and PFK must coincide. Since
PFK is the measure associated with the ground state drift/rates, the minimizers vθ and Γθ

must be equal to the ground state drift/rates.
We end this section with the remark that since the expectation is over trajectories

following the drift vθ, we can also use dst = vθ(st)dt + dwt to rewrite RT as

RT = − 1
T

E
Pθ

[∫ T

0

(
V (st) + 1

2 |v
θ(st)|2

)
dt +

∫ T

0
vθ(st) · dwt

]
. (5.28)

5.3.2 Holland’s variational principle

Now we can revisit the infinite time averaged objectives R (5.1) and (5.2). The continuous
space objective (5.1) is the same as Holland’s [26]. As we described in the introduction,
Holland’s paper is the only one explicitly relating the quantum ground state problem to
optimal control/reinforcement learning. Holland proved the variational principle (5.1) by
transforming the Schrödinger equation into a Hamilton–Jacobi–Bellman equation with a
logarithmic transformation. We have already given an alternative proof using the discrete
time connection of the previous chapter. Another route presents itself now: the infinite time
limit of RT (equations (5.26) and (5.27)) yields the objective R (we will prove this statement
shortly) .

So the relation of our work with Holland’s is as follows. Firstly, we have given two
alternative proofs of Holland’s variational principle. Secondly, we have extended Holland’s
variational principle to discrete state spaces and to finite time. In that sense, the previous
section describes a generalization of Holland’s variational principle.
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Proof: continuous state space

Starting from (5.26), we see that in the limit T →∞, the term involving the ground state
wavefunction φ0 can be dropped so that

lim
T →∞

RT = − lim
T →∞

1
T

E
Pθ

[∫ T

0

(
V (st)−

1
2 |v

θ(st)|2
)

dt +
∫ T

0
vθ(st) · dst

]
(5.29)

even if the initial states are not drawn from the stationary distribution of vθ. Furthermore,
using the remark at the end of Section 5.3.1 and the fact that the Brownian increments dwt

have zero mean, we get

lim
T →∞

RT = − lim
T →∞

1
T

E
Pθ

[
−
∫ T

0

(
V (st) + 1

2 |v
θ(st)|2

)
dt

]
(5.30)

which is precisely the objective R (5.1).

Proof: discrete state space

The term involving the ground state wavefunction can again be dropped, giving

lim
T →∞

RT = lim
T →∞

1
T

E
Pθ

∫ T

0
V (st) +

∑
s′ ̸=st

(Γst→s′ − Γθ
st→s′) dt +

∑
n

log
(

Γθ
sn→sn+1

Γsn→sn+1

)
(5.31)

Moreover, one can show that

E
Pθ

[∑
n

log
(

Γθ
sn→sn+1

Γsn→sn+1

)]
= E

Pθ

 ∑
s′ ̸=sn

Γθ
sn→s′ log

(
Γθ

sn→s′

Γsn→s′

)
∆tn

 . (5.32)

Together, these two equations imply that limT →∞ RT is equal to the objective R (5.2).



Chapter 6

Methods

To start with, we give an overview of the methods we will use for our experiments. Afterwards,
the algorithms used to generate SDE trajectories and calculate the continuous space objective
function is discussed in Section 6.2. The rest of the chapter deals with the neural network
representations, optimization, and validation.

6.1 Overview

Everything was implemented using PyTorch. The code was developed in PyTorch collabora-
tion with Prof Austen Lamacraft and Ariel Barr, and is available – for the continuum case –
at https://github.com/AustenLamacraft/QuaRL. This is the code accompanying our paper
[2].

In continuous space, we use the generalized Holland’s variational principle of Section 5.3.1.
This means we optimize a drift function vθ with respect to the objective function (5.26).
To do this, we represent the drift vθ with a neural network and update it with stochastic
gradient descent.

In discrete space, we use the discrete time reinforcement learning formulation of Chapter
4. We optimize an action-value function Qθ to solve the soft Bellman optimality equation
(4.12). To do this, we represent the action-value function with a neural network and optimize
it with soft Q-learning. For the J1-J2 model, we do the same but then solve the complex soft
Bellman optimality equation (4.25).

6.2 SDE schemes and errors

In order to calculate the objective function (5.26), we need to generate trajectories of duration
T of the stochastic differential equation

dst = vθ(st)dt + dwt. (6.1)

The simplest algorithm to solve this SDE is the Euler–Maruyama algorithm

st+∆t = st + vθ(st)∆t + ∆wt. (6.2)

where ∆wt are i.i.d. Gaussian random variables with zero mean and a variance of ∆t. To
generate a trajectory of duration T , this step needs to be repeated T/∆t times. On the
other hand, using discrete time steps ∆t introduces a discretization error that vanishes only

https://github.com/AustenLamacraft/QuaRL
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as ∆t → 0. Therefore, there is a careful balance between accuracy and efficiency when
generating these trajectories.

There are two convenient properties of our problem. The first is that the SDE (6.1) has
additive noise: there is no space-dependent factor in front of the Gaussian noise dw [32]. The
second is that, to calculate (5.26), we only need expectations with respect to the trajectories,
not the trajectories themselves. That is, we only need weak convergence [32].

These two convenient properties mean we can make use of algorithms more powerful than
the Euler–Maruyama algorithm to generate the trajectories. In our experiments, we use the
SOSRA algorithm [39]. Given a batch of B of these trajectories, we make a Monte-Carlo
estimate of the objective function (5.26) as [2]

R̂T

[
vθ
]

= 1
BT

∑
b,n

[(
V
(
s(b)

n

)
+ 1

2

∣∣∣vθ
(
s(b)

n

)∣∣∣2)∆t + vθ
(
s(b)

n

)
·∆w(b)

n

]
, (6.3)

where s
(b)
n is the state after n discrete time steps of trajectory b. The initial states s

(b)
0 are

drawn from the approximate stationary distribution of the SOSRA discretization of the SDE
with drift vθ.

6.2.1 Bias and variance

In this section, we discuss the bias and variance of the estimator (6.3). This is useful for two
reasons. Firstly, since (6.3) will be used as an estimator for the ground state energy, its bias
must be known in order to report error estimates. Secondly, since (6.3) will be used as an
objective function, knowledge of its bias and variance will help to inform hyperparameter
tuning.

The bias of the estimator (6.3) has size O(∆tp) (see proof below). Here p is the so-called
weak order, which is p = 1 for Euler-Maruyama and p = 2 for SOSRA. There is an additional
bias term if the trajectories are not started from the stationary distribution, but the discrete
time process converges to its stationary distribution exponentially fast (see [41] for more
details), so that this should not be a problem in practice.

The variance of (5.26) vanishes as vθ → v∗ (see proof below), so we expect the variance
of the estimator (6.3) to decrease significantly as vθ → v∗, but not vanish completely because
of discretization errors. Furthermore, the variance obviously decreases as 1/B. Lastly, in
practice the variance is independent of ∆t if T is fixed, but decreases as 1/T for large T , and
approaches a constant as T → 0.

Proof of bias

We prove that the bias of the estimator (6.3) has size O(∆tp) if the trajectories have been
generated by an SDE scheme of weak order p. We assume that the initial states follow the
stationary distribution of the SDE discretization.
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So we need to show
E
[
R̂T

[
vθ
]]

= RT

[
vθ
]

+O(∆tp). (6.4)

Consider the stationary distribution ρθ of the drift vθ and the stationary distribution ρ̂θ

of the SDE scheme with the drift vθ. By definition of the weak order p, expectations with
respect to ρ̂θ have an error

Ê
ρθ

[g(s)] = E
ρθ

[g(s)] +O(∆tp) (6.5)

for any function g [32]. In particular, we have

Ê
ρθ

[(
V (s) + 1

2

∣∣∣vθ (s)
∣∣∣2)] = E

ρθ

[
V (s) + 1

2

∣∣∣vθ (s)
∣∣∣2]+O(∆tp). (6.6)

Because the initial states follow the stationary distributions, each of the states st of the
trajectory also follow the stationary distributions, so that this is equivalent to

E
[

1
T

∑
n

[(
V (sn) + 1

2

∣∣∣vθ (sn)
∣∣∣2)∆t

]]
= E

Pθ

[
1
T

∫ T

0

(
V (st) + 1

2

∣∣∣vθ (st)
∣∣∣2) dt

]
+O(∆tp).

(6.7)
Because the Gaussian increments ∆w and dw have zero mean, this is equivalent to what we
have to prove.

Proof of vanishing variance

The variance of (5.26) vanishes as vθ → v∗, because it involves the Radon–Nikodym derivative
between the measures of vθ and v∗. To be specific, as vθ → v∗, the Radon–Nikodym derivative
approaches the constant 1, so that the variance vanishes.

6.3 Neural network representation

6.3.1 Continuum space: PairDrift

This section follows [2].
In continuous space, we do experiments on indistinguishable particles obeying bosonic

symmetry: i.e. the ground state wavefunction is invariant under a permutation of the
indistinguishable particles. For the ground state drift, this implies equivariance with respect
to any permutation P :

vθ
i (r1, . . . , rN ) = vθ

P (i)(rP (1), . . . , rP (N)). (6.8)

To achieve this equivariance, we represent the drift with a permutation equivariant neural
network, PairDrift, adapted from [38]. Initially, single-particle and pairwise features are



36 Methods

formed according to h(0)
i = ri and h(0)

ij = ri − rj . These features are then transformed using
M layers of the form

h(m+1)
i = HardTanh

σ(m)
(
h(m)

i

)
+
∑

j

π(m)
(
h(m)

ij

) (6.9)

h(m+1)
ij = HardTanh

(
Π(m)

(
h(m)

ij

))
, (6.10)

where σ(m), π(m) and Π(m) are affine. The number of hidden nodes is fixed across the neural
network. Furthermore, the HardTanh activation is omitted from the final layer. The final
single-particle features give the drift i.e. h(M)

i = vi.
This architecture has the necessary equivariance because the affine transformations are

the same for each particle.

Initialization

The affine transformations of the final layer are initialized to zero, after which a skip connection
ensures a desirable initial drift of simple form. For example, for the Hydrogen atom we use a
linear skip connection −1. This makes sure the electron stays close to the nucleus.

For the Helium and Hydrogen molecule systems, we use Kato’s cusp conditions [29] for
the skip connection. These cusp conditions are originally meant for wavefunctions, but they
translate straightforwardly into conditions for the ground state drifts: when the separation
between two particles – interacting with a Coulomb interaction – goes to zero, the drift is
proportional to r̂. When the two interacting particles are electrons, the drift is repulsive
with a proportionality factor 1

2 , whereas for interactions between nuclei and electrons the
drift should be attractive with a proportionality factor equal to the charge of the nucleus.
Therefore, we use a sum of these terms r̂ as a skip connection, where each Coulomb interaction
contributes one term for the sum.

6.3.2 Lattice models: PeriodicCNN

In discrete space, we will do experiments on spin models defined on a square lattice with
periodic boundary conditions. Following [7, 8], we interpret a spin configuration s on such a
lattice as a square grayscale image. Therefore, it is natural to consider convolutional neural
networks (CNN), which are commonly used in deep learning applications dealing with image
data.

The most important advantage of CNNs is that they are equivariant with respect to
translations of the input. In image classification, for example, this means that the output label
does not change if the object is on another part of the image. Many quantum spin models
with periodic boundary conditions also have this feature: the ground state wavefunction is
invariant with respect to translations of the lattice.
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Fig. 6.1 The output Q(·|s) (right) of PeriodicCNN has the same shape as its input s (left).

We use a CNN to represent the action-value function Qθ. In general, the action-value
function takes a state s and an action a and maps it to a number Q(s, a). However, in
discrete action settings it is more efficient to output the action-value Q(s, a) for all actions a

given a state s.[9] Thus our CNN has a spin configuration (a grayscale image) as its input,
and needs to output a vector of values, one for each available action.

We use the transverse field Ising model as an example. In the z-basis, a spin configuration
s = {sij} specifies simply whether the spin at site (i, j) is up (with value sij = +1) or down
(with value sij = −1). This can be represented as a grayscale image with grayscale 1.0 for up
and 0.0 for down.

What are the available actions? In the Ising model, all adjacent spin configurations s′

can be reached by flipping one spin. So the available actions consist of flipping the spin at a
site (i, j) or doing nothing (the trivial action). Ignoring the trivial action for now, this means
that the output of our CNN has the same shape as its input: the output at site (i, j) is the
action-value of flipping the spin at that site. This is illustrated in Figure 6.1.

We now describe PeriodicCNN: the simplest CNN architecture that fulfills the requirements
of (1) preserving the shape, (2) being fully translationally equivariant and (3) outputs
unbounded real values. PeriodicCNN consists of a variable number of layers, each of which
in turn consists of a convolution and the ReLU activation function:

CR-CR-. . . -CR-C (6.11)

Each convolution uses ‘circular half-padding’ which makes sure that the convolution fulfills
both requirements (1) and (2). Since the input is a grayscale image, there is a single in-going
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channel. The number of hidden channels is kept constant across the CNN. The final layer
only has a convolution, so no activation function, which makes sure the output values are
unrestricted. The number of out-going channels is variable. Additionally, the last convolution
is initialized to zero.

The variables of PeriodicCNN are (1) the number of layers and the number of hidden
channels, controlling the expressiveness of the CNN, (2) the kernel size of the convolutional
filters, and (3) the number of out-going channels. The number of out-going channels is fixed
by the spin model under consideration. In the Ising case, there is a single out-going channel,
and its value corresponds to the action of flipping the spin at that site. For the other models
we experiment with, the number of out-going channels is either two or four.

The trivial action-value

Up to now, we have ignored the action-value of the trivial action, i.e. Q(s, a0). We have
seen that this allows for a natural representation in terms of a shape-preserving CNN. Next,
we show that the trivial action-value follows from the others, so that it does not need to be
learned separately.

Observe that for the optimal action-value function Q∗ (4.11), we have

exp (Q∗(s, a0)) = er(s)+E0∆tφ0(s) (6.12)

= er(s)+E0∆t

Hss − E0

∑
a̸=a0

Hsa(s)φ0(a(s))

 (6.13)

= 1
Hss − E0

∑
a̸=a0

Hsa(s) exp (Q∗(s, a))

 , (6.14)

where we used (4.11) and the time-independent Schrödinger equation. We use this to complete
our representation: if Qθ(s, a) is an approximation of the non-trivial action-values and E is an
approximation of the ground state energy, then the approximation of the trivial action-value
is defined by

exp
(
Qθ(s, a0)

)
≡ 1

Hss − E

∑
a̸=a0

Hsa(s) exp
(
Qθ(s, a

) . (6.15)

This hinges on having an accurate estimate E of the ground state energy. This estimate is
discussed in Section 6.4.2.

Marshall fixed sign structure for J1-J2

Following [8], we impose the Marshall fixed sign structure (2.28) for the J1-J2 model. Because
the ground state of the J1-J2 does not exactly have this sign structure for J2 > 0, this
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introduces a fixed node error. Nevertheless, for small J2, this error is small, and optimization
becomes very challenging without this fixed sign structure.

In practice, we impose the fixed sign structure as follows. We use PeriodicCNN to predict
the (positive) amplitude of the action-value function Q(s, a). For this step we only need real
parameters. Next we add an imaginary part to Q(s, a): 0 if the Marshall sign of φ0(a(s)) is
+1 and iπ if the Marshall sign is −1. Then (4.24) ensures that this indeed fixes the Marshall
sign structure.

6.4 Validation

If we have an approximation of the ground state drift or optimal action-value function, we
need to have a manner of judging its quality. We do this validation by computing a variational
energy from the drift/action-value approximation. A lower variational energy corresponds to
a better drift/action-value approximation. Additionally, this variational energy serves as our
estimate of the ground state energy E0.

6.4.1 Continuous state space

In continuous space, following [2], we use the Monte-Carlo estimator (6.3) of (5.26) to validate
a drift function vθ. Before this estimator is calculated, there is a burn-in phase to make sure
that the initial states are drawn from the stationary distribution of the drift vθ. As discussed
in Section 5.3.1, (5.26) has a maximum value of −E0.

6.4.2 Discrete state space

In discrete space, we calculate the variational energy using the local energy. Recall that an
approximation Qθ of the action-value function defines a variational wavefunction φθ by (4.14)
or (4.26). Following [8], we then calculate the variational energy as

⟨H⟩ = E
s∼|φθ|2

[∑
s′

Hss′
φθ(s′)
φθ(s)

]
(6.16)

and sample states s ∼ |φθ|2 using a Metropolis algorithm. In contrast with [8], we use the
MALA algorithm described in Section (2.2.3) using the proposal policy

πθ(a|s) ∝


∣∣∣Hsa(s) exp

(
Qθ(s, a)

)∣∣∣ if a ̸= a0

0 if a = a0.
(6.17)

A Monte-Carlo estimate of (6.16) then gives an approximation of the variational energy, and
by extension, of the ground state energy.
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6.5 Optimization

6.5.1 Continuous space: policy gradient

This section follows [2].
The objective function (5.1) is approximated with the Monte Carlo estimator (6.3). This is

analogous to the reparameterization trick: the expectation (5.1) with respect to Pθ is written
in terms of an expectation with respect to Gaussian random variables ∆w.[52] Therefore,
the gradient of the Monte Carlo estimator (6.3) with respect to the parameters θ of the drift
neural network vθ can be computed directly using backpropagation. Note that normally,
policy gradients are calculated indirectly, e.g. using the REINFORCE estimator.

The Monte Carlo estimator (6.3) does not include the boundary term log
(

φ0(sT )
φ0(s0)

)
which

is part of (5.26). Although this term vanishes from the expectation if the initial points are
drawn from the stationary distribution, the gradient of this term does not. To deal with this,
we use the approximation

∇θ log
(

φ0(sT )
φ0(s0)

)
= ∇θsT · v∗(sT ) ≈ ∇θsT · vθ(sT ). (6.18)

Therefore, the final approximation for the policy gradient is

∇θRT = ∇θR̂T −∇θsT · vθ(sT ) (6.19)

where R̂T is the Monte Carlo estimator (6.3). The bias of this approximation vanishes as
∆t→ 0 and vθ → v∗.

With this final policy gradient approximation, the parameters θ of the drift vθ are updated
using ADAM [31].

6.5.2 Discrete space: soft Q-learning

In discrete space, we optimize the action-value function Qθ to solve the soft Bellman equation
(3.11b). Optimization is done using the soft Q-learning algorithm [19] with a few adjustments.
In short, the adjustments are:

1. Changes for finite action spaces
Sampling actions and calculating expectations can be done exactly in finite action
spaces, so there is no need for a separate actor network.

2. The variational energy parameter E

Our Q-representation has the additional parameter E, which is updated using (5.27).

3. Different sampling of states and actions
States are sampled ∼ |φθ|2 as described in Section 6.4.2, actions from (6.17).
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4. Variance instead of mean squared error
We use the variance instead of the MSE in the loss function (6.23). This is appropriate
for our infinite horizon averaged objective (3.10). [47]

A summary of the resultant procedure is given in Algorithm 1. In the following, we
discuss it in more detail. Apart from the listed adjustments, this algorithm is due to [19].
Moreover, we will discuss states and actions in the singular, but in practice, a batch of states
and actions is processed in parallel.

Algorithm 1: Adjusted soft Q-learning
Initialize θ, θ̄, s0, E
for each episode do

Get experience

s ∼
∣∣∣φθ
∣∣∣2 (·|s0)

s0 ← s
a ∼ πθ(·|s)
D ← D ∪ {s, a, r(s), a(s)}

Update E
E ← ⟨H⟩
E ← min{E, Hss}

Update θ
{s, a, r(s), a(s)} ∼ D
θ ← θ + α∇θJ
Every M episodes do

θ̄ ← θ

end

Initialization

The adjusted soft Q-learning algorithm learns the parameters θ, θ̄ and E0. As in the standard
soft Q-learning algorithm, θ and θ̄ parameterize action-value functions Qθ and Qθ̄. Here
Qθ̄ is known as the target network. The parameters θ are initialized using the standard
initialization procedures of PyTorch, except for the last layer which is initialized to zero. The
parameters of the target network θ̄ are then initialized to equal θ.

Additionally, the algorithm keeps track of a parameter E, which is the current variational
energy. This parameter should be initialized to any value larger than the ground state energy.

Finally, the state s0 is initialized according to a uniform distribution. In the systems
we consider, it is known which spin configurations s satisfy φ0(s) ̸= 0. The initialization
distribution is chosen to be uniform over all such spin configurations.
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Experience

The soft-Q learning algorithm says that experience can be sampled in any way, as long as
every possible state and action has a change of being sampled. They then propose a sampling
method with an additional actor network. As we have a discrete action space, we do it as
follows.

The state s is obtained using a fixed number N of MALA steps as described in Section
6.4.2, starting from the initial state s0. In this way, s approximately samples from |φθ|2. The
initial state s0 is then updated to s, so that eventually also s0 approximately samples from
|φθ|2.

The actions are chosen following the policy (6.17). Sampling from this policy is easy
because we have a finite action space. The trivial action a0 never needs to be selected because
its action-value follows from the others, as described in Section 6.3.2.

As is standard, the experience, consisting of a state s, an action a, the obtained reward
r(s) and the new state a(s) are saved in the experience replay D. We discard the oldest
experiences if the size of the experience replay D grows beyond a certain threshold.

Update E

The state s0 gets used to update the variational energy E. Because this approximately
samples from |φθ|2, it can be used to calculate ⟨H⟩ with (6.16). Then E is updated to ⟨H⟩.

Additionally, if any state has Hss < E, then E is decreased below Hss, so that it always
satisfies

E < min
s∈D
{Hss}. (6.20)

Update Q

Firstly, an experience is sampled from the experience replay D. The experience is then used
to update θ as follows. Recall the soft Bellman optimality equation (4.12)

Q∗(s, a) = r(s) + E0∆t + log E
a′∼p∆t(·|a(s))

[
exp

(
Q∗(a(s), a′)

)]
. (6.21)

Because E0 is constant, we can rewrite this as

Vars,a

[
Q∗(s, a)− r(s)− log E

a′∼p∆t(·|a(s))

[
exp

(
Q∗(a(s), a′)

)]]
= 0. (6.22)

In soft Q-learning, this is turned into the loss function

J(θ) = Vars,a∼D

[
Qθ(s, a)− r(s)− log E

a′∼p∆t(·|a(s))

[
exp

(
Qθ̄(a(s), a′)

)]]
. (6.23)
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Note that the target network Qθ̄ appears in the expectation. Furthermore, the expectation
can be computed exactly [9] because we have a finite action space:

E
a′∼p∆t(·|a(s))

[
exp

(
Qθ̄(a(s), a′)

)]
=
∑
a′

p∆t(a′|a(s)) exp
(
Qθ̄(a(s), a′)

)
(6.24)

So the sampled experience is used to calculate the loss function (6.23) and its gradient
with respect to θ. This gradient is then used to update θ with ADAM. Finally, the target
network Qθ̄ is updated every M episodes to match Qθ.

For the complex soft Bellman optimality equation (4.25), we obtain the same loss function
(6.23), but the expectation E is replaced with Ẽ as defined by (4.22).
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Results

We now present our results. Our main benchmark is the comparison of our variational
energies with numerically exact ground state energies. This gives a general indication of the
quality of the ground state approximation.

7.1 Hydrogen and Helium atom, Hydrogen molecule

This section follows [2].
All energy results are summarized in Table 7.1, where we continue to use Hartree atomic

units Eh = 1. We compare ours with numerically exact and Hartree–Fock values (if available).
The difference between the latter two is commonly called the correlation energy. We recover
around 90% of this correlation energy and are always within 0.006 Eh of the numerically
exact ground state energy.

Recall that the hydrogen atom has ground state energy E0 = −1
2 and ground state drift

v(s) = −ŝ. In Figure 7.1 our optimized drift vθ is plotted in the x − y plane. It closely
resembles the ground state drift, as it has an almost uniform magnitude and is directed
towards the nucleus. This drift has a variational energy of −0.497 so is 0.6% from the exact
ground state energy.

For the Helium atom, which has ground state energy −2.904, [3] our optimized drift
recovers 86% of the correlation energy.

Finally, the ground state of the Hydrogen molecule has internuclear distance R = 1.401
and ground state energy E0 = −1.174. [33] At this separation, we recover 88% of the
correlation energy. If we fix the internuclear distance at R = 2.800, i.e. approximately twice
the equilibrium separation, then we get within 3mEh of the numerically exact ground state
energy. In Figure 7.1 we plot the electron density distribution at separation R = 2.800
resulting from our optimized drift. To be more precise, it shows a few thousand states, each
resulting from running the stochastic differential equation with our optimized drift. In this
way, Figure 7.1 illustrates how we can sample from the ground state.
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Fig. 7.1 (Left) The learned drift field for the Hydrogen atom in the x− y plane, colorscaled
by its magnitude. (Right) The electron density distribution in the stretched H2 molecule at
proton separation R = 2.8. Both figures are reprinted from [2].

H atom He atom H2 molecule H2 molecule
(R = 2.8)

Numerically exact -0.5 -2.904 [3] -1.174 [33] -1.071 [33]
Hartree-Fock N/A -2.862 [3] -1.134 [12]
Ours -0.497 (0.6%) -2.898 (0.3%) -1.169 (0.4%) -1.068 (0.3%)
% corr N/A 86% 88%

Table 7.1 Comparison of our approach with Hartree-Fock and numerically exact values for
the ground state energies. The percentages within parentheses are the relative errors of our
energy estimate compared to the numerically exact value. The last row shows how much of
the correlation energy is recovered by our optimized drift.
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Ising XY AFH J1-J2
Numerically exact -1.0638 [21] -1.10539 [22] -0.6789 [45] -0.5990 [45]
Ours -1.0628 -1.10530 -0.6750 -0.5896
Relative error 0.09% 0.008% 0.6% 1.6%

Table 7.2 Comparison of our approach with numerically exact values for the ground state
energies. All lattices have size 6 × 6. The Ising model is at the pseudo-critical point
J ≈ 0.327583, the J1-J2 model is evaluated at J2 = 0.2.

7.2 Spin lattice models

We present results for square lattices of size 6×6 for the transverse field Ising model (2.16), the
XY model (2.21), the antiferromagnetic Heisenberg model (2.26) and the J1-J2 model (2.34),
all with periodic boundary conditions. All energy results are summarized and compared with
numerically exact values in Table 7.2. The relative error is between 0.008% for the XY model
and 1.6% for the J1-J2 model.

Of course we can also measure quantities other than the ground state energy. To illustrate,
we measure the modulus of the magnetization and the spin-spin correlation for the transverse
field Ising model. We calculated the modulus of the magnetization per spin

m = 2
N

∣∣∣∣∣∑
i

si

∣∣∣∣∣ (7.1)

averaged over our optimized wavefunction for the 4× 4 Ising model for a range of interactions
J near the pseudo-critical point Jc,4 = 0.324. We also calculated the spin-spin correlation

S2(jx, jy) =
∑

i

sis(ix+jx,iy+jy) (7.2)

averaged over our optimized wavefunction for the 6× 6 transverse Ising model at the pseudo-
critical point Jc,6 = 0.328. Here a site i is identified with its coordinates (ix, iy) so that
S2(jx, jy) measures the correlation between sites that are separated by a displacement (jx, jy).

We plotted both the modulus of the magnetization and the spin-spin correlation in Figure
7.2. For the magnetization, you see that it increases with the interaction J , although for this
small lattice you do not see a true phase transition. For the spin-spin correlation, you can
see that it is periodic and invariant to swapping the ‘x’ and ‘y’ axes, as it should be. It also
decreases with distance, as it should.
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Fig. 7.2 (Left) The modulus of the magnetization per spin (7.1) of a 4× 4 Ising model near
the pseudo-critical point. (Right) The log of the spin-spin correlation (7.2) of a 6× 6 Ising
model at the pseudo-critical point.
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Discussion

Before making comparisons with other approaches and providing an outlook for future
work, we summarize the main achievements of this work. Firstly, we made the theoretical
contribution of reformulating the quantum ground state problem as a reinforcement learning
problem, for both continuous and discrete state spaces and in both continuous and discrete
time. Previous work only did this in continuous space and time. Like previous work, our
approach is mainly applicable to stoquastic Hamiltonians. Secondly, we conducted proof of
principle experiments to show that deep reinforcement learning algorithms can indeed solve
this reformulated quantum ground state problem.

8.1 Comparison with other methods

In Section 1.2, we reviewed deep learning approaches to the quantum ground state prob-
lem. In this section we compare our approach for discrete state spaces with the stochastic
reconfiguration method [8].

The downsides of our method are as follows. Firstly, reinforcement learning algorithms
are known for relatively unstable, data-hungry training, although soft off-policy methods
suffer less from these issues. Secondly, image-to-image networks such as ours intuitively need
to be larger, with more parameters, than image-to-scalar networks as used by stochastic
configuration. Lastly, the state of the art in stochastic reconfiguration has obtained more
accurate ground state energies so far, although this could have many reasons.

On the other hand, our approach learns from extremely local and off-policy data. To
improve the action-value function, only pairs of adjacent spin configurations are needed,
and these pairs in theory do not need to be generated in any special way. Stochastic
reconfiguration, however, needs to calculate a Monte Carlo average over its parameterized
wavefunction for every update step.

Another advantage of our method comes up at inference time: our method can sample
more efficiently from the ground state. The reason is that our ‘MALA’ algorithm – only
feasible when you have access to an action-value function – is more efficient than Metropolis–
Hastings with a uniform proposal distribution (e.g. for the XY model acceptance probabilities
increased from 75% to 99%).
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8.2 Comparison between our continuous and discrete time
methods

We have shown that the quantum ground state problem is equivalent to both a discrete
and a continuous time reinforcement learning problem. The discrete time perspective leads
naturally to a Q-learning method, the continuous time perspective to a policy gradient
method. How do they compare?

As discussed before, the Q-learning method learns from local and off-policy data. In
contrast, the policy gradient method learns from on-policy trajectories. This makes the
Q-learning method more sample-efficient and less memory intensive.

Whereas the Q-learning method obtains the ground state wavefunction, the policy
gradient method as we presented it does not. This means that the policy gradient method
can only calculate expectations of on-diagonal observables. If the policy gradient method is
complemented with value estimation, however, this issue would vanish.

A standard advantage of policy gradient is that it is more principled. Policy gradient
directly optimizes the objective function, making it more stable and easier to understand
and work with.

Finally, in continuous space both methods have issues in the limit of small time steps
∆t→ 0. The action-value function Q contains no information as ∆t→ 0 because it is the
same for each action. Advantage learning for example may alleviate this problem. On the
other hand, as discussed in Section 6.2.1, the variance of the policy gradient increases as
∆t→ 0, slowing down convergence.

8.3 Outlook

We finish with an outlook for future work.

Reinforcement learning algorithms

There are many types of reinforcement learning algorithms so many ways to improve upon
our relatively simple soft Q-learning and policy gradient techniques. Model-based methods
such as MuZero [44] could boost performance, considering we have a perfect model of our
environment. For small discrete time steps, advantage learning [1] could resolve the issue of
continuous space discussed above.

For continuous time, value-based algorithms explicitly designed for the continuous time
setting such as those for semi-Markov decision processes [4] may be explored. There are also
policy rollout methods that promise better performance than policy gradient methods.[49]

In continuous space, state-value estimation would give access to the ground state wave-
function. This would allow the calculation of non-diagonal observables and enable the MALA
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algorithm of Section 2.2.2. A suitable candidate is the soft actor-critic algorithm [20], which
includes state-value estimation and is a state-of-the-art method for continuous action spaces.

Neural network representation

Next, we discuss possible improvements for the PeriodicCNN architecture that we used
for the discrete state space experiments. As we have noted before, the action-value function
Q can be seen as an image-to-image transformation. Therefore, the architectures used
in image-to-image problems, such as encoder-decoder networks [27] may be particularly
beneficial.

Moreover, quantum spin models often have symmetries beyond translation equivariance.
In fact, all models we have considered obey dihedral symmetry, which may be built into a
CNN [10, 13]. Spin-flip equivariance may be built in by computing bond variables in the first
layer of the CNN.

Other extensions

We end with somewhat speculative suggestions for extensions beyond optimization and
representation. Firstly, there already exist many quantum Monte Carlo methods that in
principle obtain the quantum ground state (properties) with arbitrary accuracy. It would be
interesting to investigate whether our method can be combined with any of those existing
methods to make them faster.

Secondly, our method is mostly confined to stoquastic Hamiltonians. Ideally, our method
would be extended to deal with ground states of general Hamiltonians. As a steppingstone
towards that goal, a fixed node version of our method may possibly be obtained from the
fixed-node Feynman–Kac formula [6].

Lastly, our methods use continuous time or small discrete time steps, whereas most
modern reinforcement learning algorithms are designed for discrete time steps. A proper
discrete time formulation would therefore be highly desirable. An initial exploration of this
direction suggests that a proper discrete time formulation is indeed possible for discrete state
spaces.
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Appendix A

Hyperparameters

For the continuous state space experiments, we used an exponential decay of the learning
rate: the learning rate was multiplied by a factor 0.95 every 10 training steps. Trajectories
had 210 time steps of size ∆t = 0.01. The initial learning rates, as well as other training
hyperparameters can be found in Table A.1.

For the discrete state space experiments, we used an initial learning rate of 10−3. For the
XY model, this was exponentially decayed by a factor 0.99 every 20 episodes, for the other
models it was kept constant. Batches had size 210, the replay memory had size 216. Between
episodes, 64 Metropolis–Hastings steps were taken. The target network was updated every
20 episodes. The time step ∆t had size 10−4. The neural network architecture differed a bit
per model, see Table A.2.

H atom He atom H2 molecule H2 molecule (R = 2.8)
Batch size 210 210 210 210

Initial learning rate 10−2 10−3 5× 10−4 10−2

Width of hidden layer 256 64 64 64
Table A.1 Hyperparameters used in continuous state space experiments.

Ising XY AFH J1-J2
Kernel size 3 3 3 5

Number of layers 3 3 5 3
Width of hidden layer 32 32 64 32

Table A.2 Neural network architecture used in discrete state space experiments.
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